
SINGULAR PERTURBATION PROBLEMS 

BY WILLIAM A. HARRIS, JR. 

1. Introduction 

We are concerned with showing the relationship of the solution of a boundary 
problem (1.1), (1.2) as e-+ o+ to the solutions of a related degenerate problem 
(1.3), (1.4). The problems are 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

d 
dt X1(t, e) = A 11(t, e)x1 + · · · + A1p(t, E)Xp ) 

i 2 t X2(t, e) = A21(t, e)X1 + + A2p(t, E)Xp 

+ A,.,(t, ,)x, j 

R(e)x(a, E) + S(E)x(b, E) = c(E), 

~ 1 = A 11(t, O)x1 + · · · + A1p(t, O)xP \ 

: - An(t, O)x, + · · · + A,,(t, O)x, f, 
~ = Ap)t, O)x1 + · · · + Ap)t, O)xJ 

R(O)x(a) + S(O)x(b) = c(O), 

, 

where the h; are integers, 0 < h2 < hs < · · · < hp = h, X; is a vector of dimen
sion n;, m = LJ-2 ni, A;i(t, e) are matrices of appropriate orders with asymp-

totic expansions, x ;, the veeto, (:} R and S file square makices of mde, 

n1 + m, and e > 0. 
Under three hypotheses, Hl, H2, H3, we shall prove Theorem 1 (section 6) 

which embodies our results for the problem indicated above. We begin by re
ducing the problem (1.1), (1.2) to a canonical form (2.12), (6.3). We show that 
the solution of the canonical boundary problem has a limit as e-+ o+ which 
satisfies the corresponding degenerate differential system and n1 of the degenerate 
boundary conditions. 

The results of this paper are most closely related to the work of G. G. Chapin, 
Jr., ([2]), W. R. Wasow ([11]), and I. S. Gradstein ([4]), who consider single 
Nth order differential equations. Chapin and Wasow consider the case where a 
conditions are specified at one point and N - a at another point. Gradstein 
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considers an initial value problem which is essentially contained in Theorem 1 
of this paper. 

2. Preliminary transformations 

Let Bii(t) be those matrices which must be non-singular in order to solve the 
degenerate differential system (1.3) by first solving the last equation for Xp and 
substituting this solution into the preceding equations and repeating this process 
until we have only a differential system to solve of the form dxifdt = B 11(t)x 1, 
Bpp(t) = App(t, O), Bp-1,p-1(t) = Ap-1,p-1 - Ap-1,pA;1Ap,p-1(t, O), etc. 

Under the assumption of the non-singularity of these matrices, Bii, i = 2, 
• • • , p, E. R. Rang, ( [8]), has shown there exists a non-singular transformation, 
0 :::; e :::; • e0 , a :::; t :::; b, of the form 

(2.1) x(t, e) = (t T;(t)ei) y(t, e), 

which changes the differential system (1.1) into (2.2) with corresponding de
generate form (2.3). 

(2.2) 

(2.3) 

d dt Y1(t, e) = Cu(t, e)y1(t, e) + · · · + C1p(t, e)yp(t, e) 

h2 d ( ) C + E df, Y2 t, E = 21 Yi 

i Yi = Cu(t, 0)y1 J 
0 = C22(t, 0)y2 (, 

~ = Cpp(t, O)yJ 

where Cii(t, O) = Bii(t), Bi.(t) non-singular a :::; t ::s; b, and the elements of 
Ci/t, e) are 0( ea) for any particular large integer a, i ;6 j. We will have occa
sion to assume that this has been done. 

For an Nth order differential system of the form 

(2.4) 13dz (~ ·) E -d = +--' G,j(t)e3 z, 
t 3=0 

the most general asymptotic expansions of solutions of this equation have been 
given by H. L. Turrittin in [9]. In particular, he has given sufficient conditions 
for the existence of a transformation z = H(t, e)w, where 

K 

(2.5) H(t, e) = L iHk(t), 
k=O 
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Ka suitable positive integer, which will transform equation (2.4) into 

(2.6) l ~~ = { (BijAj (t, e)) + l1 B(t, e)} w(t, e) , 

where the elements of B(t, e) are 0(1) and the characteristic polynomials X;(t, e) 
have the form 

/J-1 
(2.7) X;(t, e) = L ix;k(t), j = 1, 2, • • ·, N, 

k=O 

and X;(t, e) = A1e(t, e), or A;(t, e) ~ Ak(t, e), a =s; t =s; b, 0 < E:::; Eo. (Actu
ally fractional powers of e may be introduced; but an introduction of a new 
parameter could be made in the beginning, so that without loss of generality we 
assume that no fractional powers of e occur.) 

Further, if the characteristic polynomials X;(t, e) are such that 

Re{e-/JX1(t, e)}:::; ... :::; Re{e-/JAN(t, e)}, fora:::; t =s; b, 0 < E:::; eo, 

there exists a fundamental matrix solution of (2.6) of the form 

W(t, e) = F(t, e)E(t, e), 

F(t, e) 

E1 
0 ... ol 0 E2 : • ·: . 

E(t, e) : . ' 

0 ... EM 

and asymptotically, 
00 

Bii '°' ( k, Fi; V'\ € .t:..., F,jk t)e , /3,; > 0 if i ~ j; 
k=O 

E, = I;, exp {e-/J Lt X,.,(u, e) du}, 

where I, is an identity matrix, and Ar; are the distinct characteristic polynomials. 
If Turrittin's results apply to the individual equations 

(2.8) /i t Y;(t, e) = Ci1(t, e)yi(t, e), j = 2, ••• ' P, 

and H;(t, e) is the corresponding transformation required for Turrittin's canon
ical form, the transfo'i'm.ation x = Hz, where 

(2.9) H(t, e) = T(t, e) Hi = Ir, T as in (2.1), 
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will change ( 1.1) into 

(2.10) 

dz1 
dt = Duz1 + D12Z2 

h dz2 
e dt = D21z1 + D22Z2, 

where Lin (2.1) has been chosen so that D12(t, e) = O(e), D21(t, e) = O(e), 
,. - - . 

D22 = (Bi;"ll.;(t, e)) + e D22, D22(t, e) = 0(1) and "ll.;(t, e), J = 1, .. • , m, are 
the non-vanishing characteristic polynomials associated with the differential 
systems (2.8). 

It is advantageous to make one more transformation on (2.10), namely 

(2.11) z(t, e) = P(t)u(t, e), 

where P(t) can be determined so that the new differential system is 

d;i (t, e) = B11(t, e)u1(t, e) + Brn(t, e)u2(t, e) 

(2.12) 

id; (t, e) = B21(t, e)u 1(t, e) + B22(t, e)u2(t, e), 

with related canonical degenerate differential system 

(2.13) 

d 
-U1 = 0 
dt 

where a;(t) ¢ 0, a s t s b, 

such that the fundamental matrix solution W(t, e) for (2.12) when Turrittin's 
results apply, has the form 

(2.14) W(t, e) = ([I])E(t, e)* 

The effect of the transformations on the boundary form (1.2) will be con
sidered in section 4. 

3. The canonical problem 

We make the following hypothesis. 
Hl: (i) The matrices Ai;(t, e) indicated in (1.1) have asymptotic expansions of 

appropriate high finite orders. 
(ii) The matrices Bii(t) referred to in section 2 are non-singular a s t s b. 
(iii) There exists a non-singular transformation x(t, e) = H(t, e)u(t, e), 

where H(t, e) = L~=o H;(t)i, a S t S b, 0 < e S eo, which will convert (1.1) 
into the canonical form (2.12). 

(iv) The m non-vanishing characteristic polynomials "ll.;(t, e) satisfy 

Re{ e-""ll.1(t, e)} S · · · S Re{ E-hAm(t, e)}, a S t S b, 0 < E S Eo. 

* [<t>(t)) represents a function q,(t,•) = q,(t) + •7<i>1(t,,), -y > 0, \<i>1(t,,)\ < B. 
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If X(t, e) is any fundamental matrix for a system of differential equations of 
theformdx/dt = A(t, e)x, e > 0,a ~ t ~ b,thenanyparticularvectorsolution 
l(t, e) must be of the form l = Xl(e). Thus if l(t, e) is to satisfy the boundary 
conditions R(e)l(a, e) + S(e)l(b, e) = c(e), we must have 

{RX(a, e) + SX(b, e)}l(e) = c(e). 

Thus, if A(e) = {R(e)X(a, e) + S(e)X(b, e)}, l(t, e) will be unique if A(e) 
is non-singular, for then 

(3.1) 

The limit problem is then the computation of the 

lim,➔o+l(t, e) = lim,➔o+X(t, e)A- 1(e)c(e). 

To evaluate this limit we need more detailed information about the structure 
of A- 1(e). 

4. a-1(e) for the canonical problem 

We assume that we are dealing with the canonical differential system (2.12) 
which has been obtained from (1.1) by the transformation 

x(t, e) = H(t, e)u(t, e) 

of Hl-(iii). This transformation will change the boundary conditions from (1.2) 
into 

(4.1) M(e)u(a, e) + N(e)u(b, e) = c(e), 

where M(e) = R(e)H(a, e), and N(e) = S(e)H(b, e). 
We make the following hypothesis. 
H2: (i) R( e) = Ro + eR1( e), S( e) = So + eS1( e), where the elements of 

R1( e) and S1( e) are bounded for 0 ~ e ~ eo and the rank of (R( e): S( e)) = 
n1+m,0~e~eo. 

(ii) The non-vanishing characteristic polynomials have non-zero real parts, 

Re{e-hX1(t, e)} ~ ... ~ Re{x-hxk(t, e)} < 0 < Re{e-hXH1(t, e)} 

~ .. . ~ Re{ e -hxm ( t, e)} ' 
a ~ t ~ b, 0 < e ~ eo . 

If we choose for the fundamental matrix the one indicated in (2.14), we have 

A(e) = {M(e) ([J]) + N(e) ([I]) (101 Em(~, e))}. 

If D(e) = det A(e) ,a!! 0, A(e) will be non-singular. We have 

D( e) '-" La <ta( e)ew,,C.), 

where 
(i) a covers some finite range, 
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(ii) Wa( €) are distinct quantities, each of which is of the form 
J 

L Pk;(b, €), 
j=I 

where I, J = 0, 1, · · · , m; J 2:'.: I, (k 0 , k1 , • • •, km) is any permutation of 
b 

(0, 1, • • • , m); Po(b, €) = 0, p;(b, €) = €-hi ">-.;(<T, €) d<T, 

(iii) the coefficient functions da(€) ¢ 0, da(€) = 0(1) as €--+ 0+. 
For a discussion of the zeros of such exponential sums see Turrittin, ( [10]). 
All terms indicated in (ii) need not be present, however one is of particular 

interest, namely the term d(€)ew<,) where w(€) = Li=k+I p;(b, €). (We note 
that if k = m, then w ( €) = 0.) An explicit expression for the leading term of 
the coefficient function a(€) can be given as follows. Let the columns of RoH(a, €) 
and SoH(b, €) be ai 1 , ai2 respectively, and let n( €) be the n1 + mth order 
square matrix 

(4.2) 

The leading term of a(€) is the determinant of Q( €). In general for € suffi
ciently small it can be shown that if Q( €) is non-singular (see Harris [5], page 88) 

where 

j = 1, 2, • • • , m - k, 

and hence 

(4.3) 

It will be shown that the computation of the limit (3.1) as €--+ o+ is essen
tially the limit as €--+ o+ of the first n1 rows of Q- 1( €). To establish the nature 
of the elements in the first n 1 rows of n-1( €) a detailed analysis of the trans
formation H(t, €) can be made (see Harris [7]) where it is shown that in general 
the elements in the first n1 rows of n-1(€) are 0(1). 

We make the hypothesis 
H3: The matrix Q ( €) as given in ( 4.2) satisfies 

(i) Q( €) is non-singular, 0 < € ::; €0, 

(ii) the elements in the first n1 rows of n-1( €) are 0(1) as €--+ o+. 
Hypothesis H3-(i) assures us that A-1(€) has the form shown in (4.3). 
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5. Evaluation of lim X(t, e)i1-1(e)c(e) 
E➔O+ 

Combining (2.14) and ( 4.3) we have the following representation of the unique 
solution of (2.12) and (4.1). 

l(t, e) = X(t, e)A-1(e)c(e) = ([I]) 0 Ek(t, e) 0 ([ir1(e)])c(e). (
In 1 0 0 ) 

0 0 Em-k(t, e)E;;,:..k(b, e) 

We have 

Ek(t, e) -+ Ok a < 01 ~ t :::; b, 

Em-k(t, e)E;;,:..k(b, e) -+ Om-k a :::; t :::; 02 < b, 

exponentially fast due to H2-(ii), and uniformly int for the indicated intervals. 
Thus 

(5.1) .~1;!. X(t, e)A-1(e)c(e) = (~) = (i:'in(O)c1(0) t i:'i12(0)c2(0)) = l, 

a < 01 ::s; t ::s; 02 < b. 
It is clear that the limiting constant vector Z is defined for the interval 

and as a function oft is a solution of the degenerate differential system (2.13). 
We shall now show that this limiting solution satisfies n1 degenerate boundary 
conditions. 

6. Boundary conditions satisfied by the limiting solution 

Multiplication of the boundary form (4.1) on the left by any non-singular 
matrix of constants will give rise to an equivalent boundary form. 

We have partitioned n(e) and n- 1(e) as follows 

We note that Mu(O) + Nn(O) = n1,(0), M21(0) + N21(0) = n21(0), and 
Q11(e)nn(e) + i:'i12(e)Q21(e) = In 1 together with the nature of nu(O), Q21(0) 
and H3-(ii) imply i:'iu(O)nu(O) + i:'i12(0)n21(0) = In 1 and the matrix (i:'iu(O): 
i:112(0)) has rank n1. 

Thus, we have 

Further, there exists constant matrices F21 and F22 such that the matrix 

(6.2) 
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is non-singular. Let us replace (4.1) by the equivalent boundary form 

(6.3) 

where M(e) = FM(e), N(e) = FN(e), and c(e) = Fc(e). 
The corresponding degenerate boundary form to (6.3) is 

(6.4) M(O)u(a) + N(O)u(b) = c(O). 

By direct computation and (6.1) we have 

Mu(O) + Nu(O) = I n 1 

and 

Also 

c(O) = (~1(0)) = (F)c(O) = (Du(O) D12(0)) (c 1(0))' 
C2(0) F21 F12 C2(0) 

so c1(0) = Du(O)c1(0) + D12(0)c2(0) = l1. 
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Thus, the limiting solution l satisfies the first n1 degenerate boundary condi
tions of ( 6.4) corresponding to the boundary form ( 6.3). 

Without loss of generality we may assume that the boundary form (1.1) has 
been replaced by the equivalent one obtained by multiplication on the left by F 
as given in ( 6.2). Further, the solution of the canonical problem will provide 
the solution of the original problem thru the transformation of Hl-(iii), 

(6.5) x(t, e) = H(t, e)l(t, e). 

The transformation H(t, e) was defined for a ~ t ~ b, 0 ~ E: ~ eo, and 
lim,➔o+ E(t, e) = H(t, O) exists, a ~ t ~ b. Thus the limiting solution for the 
problem (1.1), (1.2) will be 

(6.6) x(t) = H(t, O)l, a < t < b. 

THEOREM 1: Under hypotheses HI, H2, H3, the two point boundary problem 
(1.1), (1.2) has a unique solution x(t, e) on a ~ t ~ b, 0 < e ~ E:o, such that 
the lim,➔o+ x(t, e) = x(t) exists on the open interval a < t < b, and uniformly 
on any closed ~ub-interval. The function x(t) satisfies the degenerate differential 
system (1.3). The limits x(a + O) and x(b - O) exist and satisfy the first n1 

boundary conditions of the degenerate boundary form ( 1 .4) . 
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