
ON UNSTABLE ATTRACTORS 

BY PINCHAS MENDELSON 

1. Introduction 

The present paper grew out of a search (initiated by a query of R. Kalman) 
for an isolated critical point in some dynamical system D = (R, I, f), which 
has the property that it is the (positive) limit of all motions in the space without 
being stable. It is easy to construct such critical points if the space R is compact 
(see, for instance, example 3 in [1]). But if R is not compact ( e.g. if R is En, 
n ~ 2) no examples were known. However such critical points do exist and an 
example of one in E 2 is given in section 6. The example just referred to was not 
inspired by some pictorial image. Instead, it was systematically derived through 
an analysis of the necessary properties of the desired singularity. This analysis, 
which is presented here, makes essential use of a rather general theorem (see 
[1] and Theorem 2 in this paper) concerning necessary and sufficient conditions 
for the parallelizability of subsystems of given dynamical systems. For that 
reason the following discussion is interesting not only for the light it sheds on 
an unexpected singularity, but also for the application it affords to the above 
mentioned result. 

2. Preliminaries 

Let R be a locally compact, separable metric space1 and let D = (R, I, f) 
be a dynamical system 2 defined in R. For a point pin R, we let fp(t) and fp(I) 
denote the motion through p and its orbit3, respectively. The positive [negative] 
semi-orbit through pis the set fp(I+) [jp(r)]4. The symbol S(p, r,) stands for 
the open sphere of radius r, and center at p. 

The following definitions are standard: A point q in R is an w-limit point 
[a-limit point] of fp(t) if there exists an unbounded sequence of positive [nega
tive]numbers tn, (n = 1, 2, ···),such that fp(tn) ------, q as n------, + oo. The motion 
fp(t) is L+[L-]-stable if the closure of fp(I+)[fp(r)] is compact; it is L-stable 
if the closure of fp(I) is compact 5. A point pis said to be wandering if there exists 
ao > OandaT > OsuchthattheintersectionS(p, o) nJt(S(p, 0)) 6 is empty 
for all t satisfying It I > T. The point p E Risa critical point if fp(t) = p for 
all t E T. The system D has an improper saddle point if there exists a sequence 

1 The metric in R is designated by p. 

2 Here I represents the real line - oo < t < + oo and f maps R X I into R in such a way 
that the triplet D is a one parameter group of transformations acting on the space R. 

3 The mapping fp: I--+ R defined by fp(t) ---> f(p, t), p fixed in R, t E J, is called a motion, 
whereas the point set fp(I) is called a path or orbit. 

4 Here J+, J- denotes the sets 0 :::; t < + oo , - oo < t ::::; 0, respectively. 
5 This is the notion of stability in the sense of Lagrange. 
6 For every fixed tin I, the mapping J, : R--+ R is the homeomorphism defined by f,(p) 

= f(p, t). 
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of points {pn} and two unbounded sequences \tnl, { rn} of real numbers such that 

0 < Tn < tn, (n = 1, 2, • .. ), 

Pn-P, f(Pn , tn) - q as n - + oo, 

whereas the sequence {f(pn, rn)} has no limit point. Finally, we recall the follow
ing two definitions: 

DEFINITION l. A critical point O in R is said to be (positively) stable if given 
any E, E > 0 there exists a o, 0 < o < E such that all points q in S(O, o) have 
the property that f q( I+) is contained in S ( 0, E) . 

DEFINITION 2. A critical point O in R is said to be (positively) asymptotically 
stable if (i) it is stable and (ii) for some o and for all q in S(O, o), fq(t) tends 
to O as t - + oo • 

3. Statement of problem 

The problem, in its least pathological form, is the following: To find a critical 
point O in R (say R = En, n ~ 2) having the following properties: 

(i) { O} is the only minimal set 7 in D 

(3.1) (ii) For all pin R, fp(t) - 0 as t - + oo 

(iii) 0 is not stable. 

Remark: Condition (3.1) (i) is equivalent to the requirement that every 
compact invariant set in D contain 0. 

4. Some necessary conditions 

We shall assume henceforth that R is then-dimensional Euclidean space En, 
n ~ 2. (The following discussion can be carried out for somewhat more general 
spaces, but to no apparent advantage). Suppose O is a critical point in R satis
fying properties (3.1). Since O is unstable there exists an E*, E* > 0, such that 
f(S(O, li), I+)s is not contained in S(O, E*) for any o, 0 < o < E*. This could 
happen either if: 

(i) f(S(O, li), I+) is unbounded for all o > 0, or if 
(ii) f(S(O, li), I+) c S(O, rJ), 7/ > E*, for some li < E* and some 7/· 

The fact that case (i) is not possible is a corollary to the following Lemma (see 
Corollary 2). 

LEMMA l. Let D satisfy condition ( 3 .1) (ii) . If Pn tends to p as n - + oo and 
{tn} is an arbitrary sequence of positive numbers, then the sequence {f(pn, tn)} is 
bounded. 

7 A set A is invariant if .f,(A) CA for all t EI. A set is minimal if it is compact, invariant 
and minimal relative to these properties. 

8 For any set A in R we define f(A, J+) to be the set 

{.f(p, t) \ p E A, t E J+j 
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PROOF. Assume the Lemma false. Then there exists a sequence of points {pn} 
and a sequence of positive numbers { tn} such that Pn tends to p as n -+ + oo, 

whereas {f(pn, tn)}, (n = 1, 2, • • ·), is unbounded. The sequence {pnl, being 
bounded, is contained in S( 0, N) for some sufficiently large integer N. On the 
other hand, since {f(pn , tn)} is unbounded, we may assume, without loss of 
generality (w.l.o.g.), that p(f(pn, tn), 0) ~ N + 1, (n = 1, 2, • · • ). 

Let the arc {fp(t) lt1 :::; t ::; t2 ; t1, t2 E I} be denoted by f(p; t1, t2) and the 
boundary of S( 0, N) by L ( 0, N). Then f(Pn ; 0, tn), (n = 1, 2, • · ·), must 
intersect L ( 0, N), and we designate the last such point of intersection by 
p:. Clearly p:, (n = 1, 2, ···),may be represented as the pointf(Pn, t:) for 
some uniquely determined 9 t: satisfyinp; 0 < t: < tn . For the sake of convenience 
we require, w.Lo.g., that p: tend top' on L (0, N). 

It is a consequence of our construction that the arc f(p:; 0, tn - t:), (n= 
1, 2, ···),does not intersect S(0, N). We write tn - t: = Tn, (n = 1, 2, • • • ), 
in which case the points f(Pn, tn) and f(p:, rn), (n = 1, 2, • • • ), are identical. 

It is easy to see that Tn -+ + oo as n-+ + oo, for if fr,,} contained a bounded 
subsequence, it would contain a convergent subsequence converging, say, to r 
whence, by continuity, {f(pn, tn)} = {f(p:, rn)l, (n = 1, 2, ···), would have 
a limit point, namely f(p', r), contrary to assumption. 

Since f(p', t) tends to 0 as t-+ + oo, we may choose T, T > 0, such that 
f(p', T) is contained in S(O, N /2). For the sake of convenience we take N ~ 8. 
Using continuity off we choose an M such that p(f(p:, t), f(p', t)) < 1 for all 
n ~ Mand all 0:::; t::; T. Since f(p'; 0, T) intersects L (0, N/2) and since 
N/4 > 1, it follows that, for all n ~ M, the arc f(p:; 0, T) intersects L (0, 
3N /4). But if n is sufficiently large Tn exceeds T and therefore the arc f(p: ; 
0, T) is properly contained in f(p~ ; 0, rn). The latter arc, however, does not 
intersect S( 0, N). The contradiction just displayed completes the proof of 
Lemma 1. 

COROLLARY 1. Under the conditions of Lemma 1, if A is a bounded subset of R> 
then f( C(A), 1+) 10 is bounded. 

PROOF. The proof is trivial 

COROLLARY 2. Under the same conditions for any o, o > 0, there exists an 'f/ = 
TJ(o), 0 < o < 'f/, such that f(S(0, o), I+) is contained in S(0, TJ). 

COROLLARY 3. If for all pin R, .fp(t) tends to 0 as t -+ + oo then D has no im
proper saddle points. 

PROOF. The proof follows directly from Lemma 1 and the definition of im
proper saddle points. 

LEMMA 2. Let D be a dynamical system without improper saddle points. Let Pn 
tend top and f(Pn , tn) tend to q as n-+ + oo. Let A be the set U :=1 f(Pn ; 0, tn). 
Then C(A) is compact. 

9 Uniqueness follows from the fact that the existence of periodic solutions would be in
compatible with condition (3.1) (ii). 

1° C (A) denotes the closure of A. 
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PROOF. For a proof see Lemma 4 in [1]. 

LEMMA 3. Let D satisfy conditions ( 3 .1) ( i), (ii). If 0 is not an a-limit point of 
any motion other than itself, then D* = (R - 0, I, flR - 0) has no improper 
saddle points. • 

PROOF. Assume the contrary. Suppose Pn tends top and qn = f(Pn, tn) tends 
to q, where both p and q are points in R - 0. Let { 7nl, 0 < Tn < tn, (n = 1, 
2, ···),be such that the sequence {f(pn, 7n)} has no limit point inR - 0. But 
{f(pn, 7n)l, (n = 1, 2, •••),has at least one limit point inR (Lemma 1) hence 
this limit point must be the point O and f(Pn , 7,,) actually tends to Oas n _, 
+oo. We writef(qn; - r:) forf(Pn, 7n) where 7: = tn - Tn, (n = 1, 2, • • • ), 
and observe that an argument similar to one used in the proof of Lemma 1 
yields that 7:-, + oo as n - + oo. We now have: 

( i) qn --l- q as n --l- + oo, q E R - 0 

(ii) f( qn, - 7:) --l- 0, 7: --l- + oo as n --l- + oo 

Let A = u:-d(qn; 0, -7:). Then C(A) is compact (Lemma 2). If t Er 
thenf(qn, t) tends tof(q, t) as n - +oo. Furthermoref(qn, t) is contained in 
f(qn; 0, - r:) for all n sufficiently large. Thus f(q, t) E C(A.) for all t E r 
whence fq(r) c C(A), a compact set. The motion fq(t) is therefore £--stable 
and its a-limit set Aq must contain a minimal set. Since the only minimal set in 
Dis the set consisting of the isolated critical point 0, it follows that 0 is in Aq, 
contradicting our original assumption. This completes the proof of Lemma 3. 

Suppose {O} is the only minimal set in D and fp(t)-, 0 as t - + oo for all 
p in R. Then no motion in D* = (R - 0, I, flR - 0) is either L + or L- -stable. 
For otherwise the a- or w-limit set of that motion would be a compact invariant 
set contained in R - 0. But every compact invariant set must contain a (non
empty) minimal set. The system D* consists, therefore, solely of motions which 
are £-unstable. 

We recall that in a dynamical system without improper saddle points every 
point which is £-unstable is wandering (see [1], Theorem 2 and [2], §9). It 
follows from Lemma 3 that if 0 is not an a-limit point of any motion other than 
itself then all points in R - 0 are wandering. 

Niemyckii and Stepanov showed ( [2], §9) that for a dynamical system to be 
equivalent to a system of parallel lines in Hilbert space, ( or in En+i if R is simply 
then dimensional Euclidean space En) 11 it is necessary and sufficient that the 
system have no improper saddle point and that every point be wandering. 

We have therefore completed the proof of the following Lemma: 

LEMMA 4. Let { O} be the only minimal set in D and let f P(t) - 0 as t - + oo 

for all p in R. Suppose furthermore that 0 is not an a-limit point of any motion 
other than itself. Then D* = (R - 0, I, f lR - 0) is parallelizable. 

11 Dis said to be equivalent to a system of parallel lines in Hilbert space H, or simply paral
lelizable, if there exists a homeomorphism of the space R onto a subset of H which is order 
preserving on the orbits of D and carries these orbits onto a family of parallel lines in H. 
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THEOREM 1. If { 0 }, is the only minimal set in D and fp(t) - 0 as t - + oo for 
all p in R, and if, furthermore, 0 is not an a-limit point of any motion other than 
itself then 0 is (positively) asymptotically stable. 

PROOF. Theorem 1 is an easy consequence of the following general result 
proved by the author in [1]. 

THEOREM 2. Let D = (R, I, f) be an arbitrary dynamical system and suppose 
C, C C R, is a compact invariant set ( of the system D), the connected components 
of which are designated by C1 , • • • , C\ Assume that R - C is connected12 and 
denote the system (R - C, I, f[R - C) by D*. 

The following is a set of necessary and sufficient conditions that D* be parallel
izable: 

I. The system D has no improper saddle points. 
II. Given any e, e > 0, there exists a o, 0 < o < e, such that any motion 

starting within the compact o neighborhood of C\ (i = 1, • • • , h), (notation W1), 
has at least one semi-orbit in W! . 

III. ( 1) If R is not compact then C is connected and every motion in D* tends 
to C as t - + oo (t - - oo). (2) If R is compact, then either: 

2.1. C is connected and every motion in D* tends to C in both directions; or 
2.2. C has exactly two components and every motion in D* tends to one of 

these components when t - + oo and to the other when t - - oo . 

It is a consequence of Lemma 4 that the "necessary" part of Theorem 2 applies 
with the set C consisting of the single critical point 0. It follows that given any 
e, e > 0, there exists a o, 0 < o < e, such that any motion starting within 
S( 0, o) has at least one semi-orbit contained in S( 0, e). The assumptions of 
Theorem 1 clearly preclude the possibility that the negative semi-orbit of any 
motion (other than 0) is contained in S(0, e). Therefore, given any e, e > 0, 
there exists a o, 0 < o < e, such that any motion starting within S(0, o) has 
its positive semi-orbit contained in S(O, e). The critical point O is thus (posi
tively) stable. The fact that its stability is asymptotic is inherent in our original 
assumptions. This completes the proof of Theorem 1. 

6. Some more necessary conditions 

We have shown thus far that an unstable attractor ( and by that is meant a 
critical point having properties (3.1)) must satisfy the following necessary con
ditions: 

( 5.1) 
(i) For every o, o > 0, f(S(0, o), I+) is bounded. 

(ii) 0 is an a-limit point of motions other than itself. 

Suppose 0 is a critical point of the desired kind. Let N denote the (invariant) 
set of all points in R the motions through which have 0 in their a-limit set. If 

12 For a more general statement of the theorem covering the case when R-C has an arbi
trary number of components see Theorem 3 in [1]. 
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q is in N then given any o, o > 0, there is at* large enough so that q* = f( q, -t*) 
is contained in S ( 0, o). But then q = f ( q*, t*) and therefore q is contained in 
f(S(O, o), I+), which is bounded. Hence N is bounded. 

LEMMA 5. The set N is closed, hence compact. 

PROOF. Let qn, (n = 1, 2, · • · ), be a sequence of points in N which tends to 
the point q in R. Choose a sequence of numbers Tn such that Tn ~ n, (n = 1, 2, 
• • • ), and f(qn, -rn) -> 0 as n-> + oo. Such a choice of Tn is clearly possible 
by virtue of the definition of N. Let A be the set U:':-if(qn; 0, - rn)- Then 
C(A) is compact (Lemma 2) andfq(r) is contained in C(A). But if the motion 
fq(I) is £--stable, its a-limit set contains a non-empty minimal set, that is, it 
must contain 0. Hence q is in N and the proof of Lemma 5 is complete. 

Consider the system (R - N, I, flR - N), which we denote by D*. Every 
point in R - N is clearly £-unstable ( otherwise condition (3.1) (i) would be 
violated, since O is contained in N). We wish to show that D* is parallelizable. 
Use will be made of the following Lemma: 

LEMMA 6. D* = (R - N, I, flR - N) has no improper saddle points. 

PROOF. Assume the contrary. Then there exists a sequence of points {pn} and 
sequences of real numbers { tn), { rn) such that 

(i) Pn E R - N, (n = 0, 1, 2, • • • ), Pn-, po as n-, + 00 

(ii) 0 < Tn < tn, (n = 1, 2, • • • ), 
(iii) f(Pn, tn) -> q as n-> + oo, q E R - N 
(iv) {f(pn, rn)} has no limit points in R - N. 

Since {f(pn , rn)} is bounded (Lemma 1), it has a limit point p* in R, and we 
assume, w.l.o.g., that f(Pn, rn) -> p* as n-> + oo. Clearly p* is in N. 

We write p; for f(Pn, rn) and r; for tn - Tn, (n = 1, 2, ···).Then f(Pn, 
tn) = f(p;, r;), (n = 1, 2, ···),and it is clear (sinceN is invariant) that 
r;-> +oo as n->+oo. Let A be the set U:':-if(p;; 0, r;). Then C(A) is com
pact (Corollary 3 and Lemma 2) and fq(r) is contained in C(A). Hence 0 
is in the a-limit set of fq(t), whence q is in N, which is absurd. This completes 
the proof of Lemma 6. 

COROLLARY 4. D* = (R - N, I, flR - N) is parallelizable. 

PROOF. Since all points in R - N are £-unstable, it follows from Lemma 6 
that all points in R - N are wandering. Therefore, by the theorem of Niemyckii
Stepanov D* is parallelizable. 

We are now able to apply theorem 2 quoted above to the system D*. A simple 
argument, similar to the one used in the proof of Theorem 1 yields the fact that 
the set N is (positively) asymptotically stable with respect to R - N 13. We 
summarize the situation in the following Theorem. 

THEOREM 3. Let O be a critical point in D = (R, I, f) having the following 
properties: (i) {O} is the only minimal set in D, (ii) for all p E R, fp(t) -> 0 as 
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t--'> + oo, and (iii) 0 is not (positively) stable. We use N to denote the "nodal 
region" in R, consisting of all those points in R, which have O in both their a- and 
w-limit sets. Then O has the following properties: 

(i) For any o > 0, f(S(O, o), I+) c S(O, rJ) for some 1/ = '1(0). 
(ii) N - 0 is not empty; N is a compact invariant set. 
(iii) D* = (R - N, I, f[R - N) is parallelizable, or, equivalently, N is 

(positively) asymptotically stable with respect to R - N. 

Fm. 1 

Fm. 2 

6. Examples 

The phase portrait of an unstable attractor in E 2 is given in Figure 1. This 
phase portrait is completely suggested by Theorem 3. 

Remark: If we replace the requirement that for all pin R fp(t) tend to O as 
t--'> + oo by the weaker requirement that for all pin Rfp(t) have Oas an w-limit 
point, the discussion carried out above goes through with insignificant modifica
tions. An example of this less stringent critical point in E 2 is offered in figure 2. 
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