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In this paper we shall describe some recent work in which we have extended, 
to systems of differential-difference equations, several familiar results in the 
theory of stability and asymptotic behavior of solutions of systems of ordinary 
differential equations. Reference will be made to more detailed expositions else­
where ( [3] and [4]). 

1. Stability theory 

In one aspect of the stability theory for ordinary linear differential equations, 
one considers a system of equations of the form 

(1) 
dy 
dt = A(t)y, 

where tis a real variable, y is an n-vector, and A(t) is an n-by-n matrix, and a 
perturbed system 

(2) dz 
dt = [A(t) + B(t)]z. 

in which z is also an n-vector. In general terms, the stability problem is to deter­
mine conditions on the matrix B(t) sufficient to insure that some property of all 
solutions of the equation in ( 1 )-such as boundedness or order of growth-will 
also be a property of all solutions of the equation in ( 2). This stability problem 
has been extensively investigated for ordinary differential equations (cf.Bellman, 
[1]). In the first part of our work, we have considered, instead of the functional 
equations in (1) and (2), the systems of linear differential-difference equations 1 

m 

(3) y'(t + hm) + L Ak(t)y(t + hk) = 0 
k=O 

and 
m 

(4) z'(t + hm) + L [Ak(t) + Bk(t)]z(t + hk) = 0. 
k=O 

Here Ak(t) and Bk(t) (k = 0, 1, • • • , m) represent given matrix functions, and 
y and z are n-vectors. The "spans" ho, h1, • • • , hm are assumed to be real, and 
can be supposed to satisfy the conditions O = ho < h1 < · · · < hm . The stability 
property we consider is that of boundedness of all solutions as t --+ + oo. 

* Presented by Professor Cooke. 
1 For a survey of the general theory of differential-difference equations, refer to Bellman, 

[2]. 
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One of the most striking features of our method is the use of the concept of 
the adjoint equation, rather than the more primitive concept of the inverse of a 
matrix which is customarily used in the stability theory for ordinary differential 
equations. Of fundamental importance in the latter theory is the fact that solu­
tions of the non-homogeneous equation 

(5) dz 
dt = A(t)z + w(t) 

can be represented by a simple integral operator involving w. In fact, if Y(t) 
denotes the matrix solution of 

(6) dY = A(t)Y 
dt ' 

where I is the identity matrix, then 

(7) z(t) = { Y(t) y- 1(s)w(s) ds 

Y(0) = I, 

is the particular solution of equation ( 5) for t > 0 which satisfies the condition 
z(0) = 0. The usual derivation of this result utilizes the method of variation of 
parameters,2 and depends on an independent proof that y- 1(t) exists fort ;:::: 0. 
Such a proof is not difficult, for differential equations. 3 However, the method 
fails when applied to more complicated functional equations such as the non­
homogeneous counterpart of the equation in (3). 

It turns out that a more illuminating approach is furnished by use of the con­
cept of the adjoint equation. Let us illustrate this first for the differential system 
in ( 5). If we multiply this system by a matrix Y, as yet unspecified, and inte­
grate, we obtain the relation 

{ Y(s)z'(s) ds = { Y(s)A(s)z(s) ds + { Y(s)w(s) ds, 

After an integration by parts, this takes the form 

(8) Y(t)z(t) = { /Y'(s) + Y(s)A(s)}z(s) ds + { Y(s)w(s) ds, t;:::: 0, 

if we assume that z(0) = 0. In order to simplify this equation, we now ask that 
Y satisfy the equation 

(9) Y'(s) + Y(s)A(s) = 0, 0 ~ s < t. 

In order to avoid the use of the inverse matrix Y(t)- 1, let us impose the further 
condition 

(10) Y(t) = I. 

2 Cf. [1], page 11, for this derivation. 
3 [1], page 10. 
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Provided that A(t) is integrable, the equation in (9) possesses a unique solution 
Y(s) satisfying (10) and defined fort 2': s 2': 0. With this choice of Y, we obtain 
from the relation in (8) 

(11) z(t) = f Y(s)w(s) ds. 

This equation provides the desired integral representation for z( t). 
The systems in (9) and (6) are said to be adjoint to one another. The function 

Y actually depends on two variables, s and t, and the relations in (9), (10), 
and ( 11) can more explicitly be written in the forms 

(12) 

(13) 

and 

(14) 

respectively. 

a 
- Y(s, t) = -Y(s, t)A(s), 
as 

Y(t, t) = I, 

z(t) = f Y(s, t)w(s) ds, 

t > 0, 0::; s::; t, 

It is easy to verify that if X(t) is the unique solution of the relations in (6), 
then the function Y(s, t) = X(t)X-1(s) is the unique solution of the relations 
in (12) and (13). Therefore (14) and (7) are equivalent results. 

For differential-difference equations, the use of the inverse is no longer possi­
ble, but the adjoint method is applicable. We have shown in [3], for example, 
that the unique continuous solution of 

(15) 

(16) 

m 

z'(t + hm) + L Ak(t)z(t + hk) = w(t), 
k=O 

z(t) = 0, 

is given by the formula 

(17) z(t + h,..) = f Y(s, t)w(s) d8, 

where Y(s, t) is the continuous solution of the adjoint system 

a m 

-- Y(s, t) + L Y(s + h,.. - hk, t)Ak(s + hm - hk) = 0, 
as k=o (18) 

t > 0, 

t > 0, 

t > 0, 0 < s < t - hm and t - h,.. < s < t, 

with condition 

(19) lo, 
Y(s, t) = 

I, 

t < s _:::; t + hm. 

S = t. 
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From this representation, it is rather easy to establish the following stability 
theorem. 

THEOREM. Let Ak(t) and Bk(t) be continuous fort > O(k = 0, 1, • · •, m). 
Then a sufficient condition for all continuous solutions of Equation ( 4) to be bounded 
as t-. +oo is that 

(i) all continuous solutions of Equation (3) be bounded; 
(ii) f" II B1,(t) II dt < oo, k = 0, 1, • • • , m; 

(iii) II Y(s, t) 11 ~ c1, t 2 0, 0 ~ s ~ t, 
where c1 is a constant and Y(s, t) 1:s the adjoint matrix. 

Complete details and additional results can be found in the paper of the 
authors, [3]. In particular, we obtain simplifications when the Ak(t) are con­
stants, and discuss a somewhat broader class of equations than is indicated in 
(3) and (4). 

2. Asymptotic expansions 

We have also considered the problem of determining the asymptotic be­
havior of solutions of linear differential-difference equations, the coefficients in 
which possess asymptotic power series expansions. The corresponding problem 
for a system of ordinary differential equations is to consider a system of the 
form in ( 1), where 

00 

(20) A(t) ,..__., L Ake\ 
k=O 

This problem has been extensively investigated (refer to Bellman, [1], for further 
discussion and references). For example, it is known that if the matrix Ao has 
simple characteristic roots ;\1 , A2, • • • , An, then with each root Aj there is asso­
ciated a solution xit) having an asymptotic expansion of the form 

(21) (co ;z: 0), 

where ri is dependent on A1 and where the ck are constant vectors. Furthermore, 
since these n solutions are linearly independent, every solution is a linear com­
bination of these particular solutions. If the characteriestic roots are not all 
simple, similar, but more complicated results are known. Also, less precise results 
have been found 4 if the relation in (20) is replaced by the weaker hypothesis 

(22) 

where 

f°" IIA~(t) II dt < 00 , 

The proof of these results rests on diagonalization of the matrix Ao + A1(t). 

4 Cf. [1], [5], [7]. 
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The problem for differential-difference equations5 is considerably more com­
plicated, largely because the infinite-dimensional nature of such equations pre­
vents use of a device as simple as diagonalization. Nevertheless, by means of a 
sequence of transformations we are able to reduce the problem to a form where 
the standard differential equation theory can be employed. We first transform 
the differential-difference equation into an integral equation, then transform 
this integral equation into an integro-differential equation. At this point the 
Liouville transformation plays a vital role. Although the guiding ideas are 
simple, the analysis becomes formidable, and we shall accordingly sketch the 
details here only in the simplest possible case. For a detailed discussion of this 
and other cases, refer to [4]. 

Consider the scalar differential-difference equation of first order 

(23) u'(t) + (ao + a(t) )u(t) + (bo + b(t) )u(t - h) = 0, 

where ao , b0 , h are given constants, h > 0, and where 

(24) a(t)------;0 and b(t)------;0 as t------;oo. 

Let A denote a root of the characteristic equation 

(25) 

and assume that A is real and simple, and that every other root has real part no 
greater than the real part of A. The first step in our discussion is to convert the 
equation in (23) into an integral equation of the form 6 

(26) u(t) = ce't - r a(r)u(r)k(t - r) dr. 
to 

Here k(t) represents a certain kernel function of the form 

(27) 

the sum being taken over all roots An of the equation in (25), and the qn(t) being 
polynomials. The equations in (26) and (27) can be obtained by transform 
theory, and are well-known. 7 Since there are constants c1 and k such that 

(28) k < A, 

under the assumptions on A we have made, we can replace the equation in (26) 
by 

(29) u(t) = ce't - c1e' 1 r e-Xra(r)u(r) dr + p(t), 
to 

(30) p(t) = - r a(r )u(r )k 1 (t - r) dr. 
to 

5 Previous work on this problem can be found in [6] and [8]. 
6 For purposes of exposition we have taken b(t) = 0, but this is not essential. 
7 Bellman, [2]. 
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If we make the assumption that f"" \ a( t) I dt < (X), we can use the equation 
in (29) directly to show that u(t) must be asymptotic to a constant multiple 
of it. Since, however, this is too severe a restriction, we must obtain a more 
suitable integral equation. We accordingly differentiate to obtain the following 
integro-differential equation. 

(31) 
d 
dt {u(t) - p(t)} = {i\ - c1a(t)) {u(t) - p(t)} - c1a(t)p(t). 

The form of this equation suggests the "Liouville" transformation 

(32) s(t) = r {i\ - C1a(r)} dr, 
to 

which results in the equation 

d 
ds {u(t) - p(t)} = u(t) - p(t) 

C1a(t)p(t) 
i\ - C1a(t). 

It follows that there is a solution u(t) of Equation (23) which satisfies the im­
proved integral equation 

(33) u(t) = es(t) + p(t) - C1es(t) r e-s(r)a(r)p(r) dr, t ~ to. 
to 

From this equation it can readily be shown that 

(34) u(t) = es(t){c 2 + 0(1)}, t----+CX>, 

provided a(t) satisfies conditions such as 

(35) f 00 I a' ( t) I dt < (X) • 

Furthermore, if a(t) possesses an asymptotic power series expansion, then so does 
u(t)e-•(t). 

By more complicated analysis, we can handle cases in which i\ is complex or 
multiple, or in which it is not the root of greatest real part. Thus we can con­
clude that with each root i\ for the equation in (25) there is associated a solu­
tion with a certain asymptotic behavior which can be determined from the 
coefficients in (23) by definite procedures, provided a(t) and b(t) satisfy condi­
tions similar to those in ( 24) and ( 35). Our methods also apply to higher order 
differential-difference equations, and indeed to any linear functional equations 
for which representations such as (26) and (27) are available. 
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