
FORCED OSCILLATIONS IN 3-SPACE* 

BY CouRTNEY COLEMAN 

1. Introduction 

Let x be an n-vector, X a real parameter, and f(x, t) and g(x, t, X) n-vector 
functions of period 1 in t. Topological methods have been used quite frequently 
to show that the system, 

(1.1) dx/ dt = f(x, t) + g(x, t, X), 

has a solution of period 1, a forced oscillation, if f, g, X, and n satisfy certain 
conditions. Bass ( [1]), Berstein ( [2]), and Halanay ( [6]) have used the notion 
of topological degree for small X if (1.1) is known to have a periodic solution for 
X = 0. Lefschetz ( [8]), Levinson ( [9]), and others have used the Brouwer theorem 
for X = 0, n = 2. For this case Cronin ([4]), reinterpreting and extending the 
results of Gomory ( [5]), has used, not the Brouwer theorem, but more general 
theorems involving topological degree. 

In this paper, we consider the case X = 0, n = 3, and we state that under 
certain conditions ( 1) has a periodic solution of period 1. The basic idea is an 
extension to 3-space of Cronin's methods in [4]. Section 2 contains the main 
theorems and some explanatory remarks. No proofs are given here. The last 
section is devoted to some examples. 

For the specific ideas used in this paper the author is indebted to the papers 
mentioned above by Cronin and by Gomory. For the topological approach to 
the study of differential systems and for the general ideas of the behavior of 
trajectories near singularities the author owes a great deal to Professor Lefschetz 
and to his book ( [8]). 

2. Statement of theorems 

Consider the system, 

(2.1) dx/ dt = f(x) + e(x, t), 

where xis an n-vector, f(x) and e(x, t) have continuous first derivatives and e has 
least period 1 int. If x = x(t) is a solution of (2.1), it may happen that 

11 x(t) 11 , 

the Euclidean norm, tends to infinity as t tends to some finite limit, to . In the 
next paragraphs in order to define certain transformations no trajectory may 
have such a finite "escape time". To insure this, we proceed as follows. Let Ao be 
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an n-cell. Then it is possible to find a positive scalar function <t( x) with the 
properties: a) a(x) = 1 on Ao; b) a(x) tends to O so rapidly as II x II tends to 
infinity that (f(x) + e(x, t) )a(x) is bounded for all x, t; c) a(x) has continuous 
first derivatives. Thus no trajectory of the system, 

(2.2) dx/ dt = (f(x) + e(x, t) )<t(x) 

can have a finite "escape time" since the right hand side is bounded everywhere. 
The integral curves of (2.2) coincide with those of (2.1) in phase space, and 
within Ao the parametrizations also coincide. Hence, any solution of (2.2) 
lying in Ao for all tis also a solution of (2.1), and conversely. 

Let x = x(t, t0, x 0) be the solution of (2.2) for which x(t 0, t0, x0 ) = x0 . Let 
Tt be the mapping, x0 --, x(t, 0, x0) - x0 fort > 0. Tt is continuous for all t > 0 
and for all x0. Let T' be the mapping x0 --, f(x 0 ) + e(x 0, O). T' is continuous 
for all x0• Ann-cell A is said to have property I if A contains the origin and all 
zeros of f(x) + e(x, 0) and if x(t, t0, x0 ) ~ x0 for any t > t0, x0 E A, the boundary 
of A. The topological degrees of Tt and of T' are defined at the origin relative 
to an n-cell A with property I. 

THEOREM 1. Let A be an n-cell with property I. Then for any t > 0 the topological 
degrees of T t and T' at the origin relative to A are equal. 

For n = 2, this theorem is proved by Cronin in [4]. For n ~ 3, the proof is 
much the same. 

THEOREM 2. Let A be an n-cell with property I. If the topological degree of T' at 
the origin and relative to A is not zero, then (2.2) has a periodic solution of period 
1 lyint, in A for all t. 

The conclusion follows directly from Theorem 1 and a standard fixed point 
theorem ( Theorem 2 in [7], for example) . 

In certain cases of interest in this paper the computation of the topological 
degree of T' can be simplified. Let f(x) and e(x, t) be vector polynomials in 
x(e(x, t) with coefficients which are periodic functions oft) of integral degrees 
kandmrespectively,k > m ~ O.Let/k\x) = (f?J(x), ••• ,f~k'(x)) denote 
the vector whose ith component is the homogeneous polynomial containing the 
terms of degree k of f;(x). Suppose that the functionsf?>(x) have no common 
zero. Let T" be the mapping, x0 --, /k'(x 0). The topological degree of T" at the 
origin and relative to any n-cell A containing the origin is defined. If A is an 
n-cell with property I, then A is said to have property II d, for d > 0, if the 
distance from the origin to A is greater than d. Theorem 3 can then be proved 
without difficulty. 

THEOREM 3. Letf(x) and e(x, t) satisfy all the conditions given in the preceding 
paragraph. For any d > 0 let there be at least one n-cell, A(d), having properties 
I and Ild. Then there is a do > 0 such that for d > do the topological degrees of 
T' and T" at the origin and relative to A ( d) are equal. 
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Note that if the n-cell A ( d) is contained within the n-cell Ao , any solution 
of (2.2) lying in A(d) for all tis also a solution of (2.1). The question of the 
existence of a forced oscillation for (2.1) thus reduces to: (a) giving conditions 
sufficient to ensure the existence of an n-cell A ( d) c Ao with properties I and 
Ild; and (b) giving conditions that the topological degree of T" at the origin 
relative to A(d) be non-zero. Theorem 4 relates to problem (a) for n = 3, 
while about (b) we note only that the degree is non-zero for odd k. 

Let f(x) = 2J=0/il (x ), e(x, t) = L1=0 e<3\x, t), where /il (x) and e<il (x, t) 
are vectors whose components are homogeneous polynomials in x of degree j, 
and k > m ~ 0. If u = II x II , y = ux, (2.1) becomes 

a. du/ dr = -u(y,/k\y)) + u2(y, P(u, y, t)) 

b. dy/ dr = g(y) + uQ(u, y, t), 
(2.3) 

where dr = u1-k dt, (,) denotes scalar product, 
k-1 m 

P(u, y, t) = - L / 3\y)uk-i-I - L elil(y, t)uk-i- 1, 

i=O i=O 

g(y) = lk\y) - (y, lk)(y) )y, 

Q(u, y, t) = -(y, P(u, y, t) )y - P(u, Y, t). 

Let S be the integral surface of (2.3) defined by u = 0. The trajectories of (2.3) 
on S satisfy the system, 

(2.4) dy/ dr = g(y). 

A trajectory 'Y of (2.4) on S is called a critical trajectory if it is a critical 
phi,nt y0 of (2.4) or if it is a cycle c, y = y( r), of period we. Let h('Y), for a 
critical trajectory 'Y, be (y 0, /kl (y0)) in the first case and f~• ( y( r) ,1<k\y(r ))) dr 
in the second. If 'Y is a critical trajectory, it is called attractive if h( 'Y) > 0, 
repulsive if h( 'Y) < 0. 

Let y° be a critical point of (2.4). It is said to be an elementary critical point 
relative to S if the determinant of the coefficients of the linear terms of g ex
pressed in suitable surface coordinates centered on y0 is not zero. That is, let 
y° = (y~, • • • , y~) and suppose, without loss of generality, that y~ > 0. In a 
suitable neighborhood of y0, Yn = (1 - y~ - • • • - y!-1)112• Let 

Z = (z1 • • • , Zn-1), 

where Zi = Yi - y~. Then (2.4) becomes 

(2.5) dz/dr = Go·Z + 0(II z 112), 
where Go is a constant n - 1 X n - 1 matrix. The critical point y0 is elementary 
if det Go ~ 0. 

THEOREM 4. Hypotheses: (a) f(x) = L,=0/3\x) and 
m 

e(x, t) = L /il(x, t), 
i=O 
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where fil(x) and /il(x, t) are vectors whose components are homogeneous poly
nomials in x of degree j and where k > m G 0; 

(b) n = 3; 
( c) the critical trajectories of (2.4) are finite in number, for no critical trajec

tory 'Y is h( 'Y) = 0, and the critical points on S are elementary relative to S; 
( d) there are no closed graphs of trajectories on S; 
( e) If the alpha limit set, A ( 'Y), of a trajectory 'Y on S contains an attractive 

critical trajectory, then its omega limit set, 0 ( 'Y), does not contain a repulsive critical 
trajectory. 

Conclusion: There is a do> 0 such that for each d > do there are a 3-cell Ao and 
its associated scalar function a(x) (as defined previously) and a 3-cell A(d) c Ao 
such that A(d) has properties I and Ild (Ao may depend on d). 

Remark 1. The hypothesis that h(-y) ¢- 0 if 'Y is a critical point y0 of (2.4) 
implies that y0 = (y~, • • • , y~) is a solution of the system 

f?\y)/y1 = • • • = f~k)(y)/Yn · 

Conversely, any solution of this system is a critical point. This same hypothesis 
also implies, evidently, that the f~k\x) have no zero in common-a hypothesis 
for Theorem 3. • 

Remark 2. Hypothesis (a) is needed in order that (2.1) might be transformed 
into (2.3). The particular form of (2.3) is essential in the construction of A(d). 
(b) is needed in order that S be the 2-sphere for which the Poincare-Bendixson 
theory is applicable. As for ( c), the mechanics of the proof require that for a 
critical trajectory 'Y, h(-y) ¢- 0. Actually, the other two clauses in (c) could be 
dropped; but, for simplification, we leave these clauses in. ( d) is used in con
structing canonical sets on S and ( e) is essential in the actual construction of 
A(d). 

Remark 3. Hypotheses (a), (c), (e) are extensions of Gomory's hypotheses 
for a system in 2-space. 

Remark 4. If the hypotheses of Theorem 4 are satisfied and if k is odd, then 
(2.2) has at least one forced oscillation contained within then-cell Ao (actually 
within A(d) ). As noted before, such a solution of (2.2) is also a solution of (2.1). 

Remark 5. Nothing will be said here about the number of forced oscillations. 
The reader is referred to [4] for a discussion of this question for n = 2. 

The proof of Theorem 4 is very long and will be given elsewhere. 

3. Examples 

We first note some general properties of the system, 

(3.1) 

where xis a 3-vector andf'k\x) is a vector whose components are homogeneous 
polynomials of degree k G I in x. If y = x II x II -i then we have, 

(3.2) 
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where dr dt I/ x [/ k-I. (3.2) gives a vector field on the unit two sphere, S2, 
centered at the origin in the x-space. The following statements are proved in 
[3]. 

(A) If 'Y is an integral curve of (3.1), then its projection onto S2 via rays 
through the origin is an integral curve of (3.2). 

(B) If 'Y is an integral curve of (3.2) on S2, then the cone generated by the 
rays through the origin and the points of 'Y is an integral surface of ( 3.1). 

(C) Every integral curve of (3.1) has a positive limiting direction and a 
negative limiting direction if and only if (3.2) has no closed graphs and no 
cycles. 

(D) Let attractive and repulsive critical trajectories on S2 be defined as 
in section 2. Then (3.1) has a trajectory whose alpha and omega limit sets 
contain the origin if and only if there is a trajectory of (3.2) whose alpha limit 
set contains an attractive critical trajectory while its omega limit set contains a 
repulsive critical trajectory. 

The verification of hypotheses (c), (d), (e) of Theorem 4 can often be simpli
fied by using these properties. 

Example 1. Consider the linear system 

(3.3) dx/ dt = Ax + e(t), 

where A is a constant 3 X 3 matrix and e(t) is continuously differentiable and 
has least period 1 in t. 

First suppose that Ax = (r 1 x1 , r2x2, r 3 x3 ), where the r; are real, distinct, 
and non-zero. Then there are six critical points on S, 'Yn = (1, 0, O), • • • , "f32 = 
(0, 0, -1), and h('Yii) = r;, i = 1, 2, 3, j = 1, 2. There are no cycles on S. 
It is not hard to show that hypotheses (d) and (e) of Theorem 4 are satisfied 
in this case. 

Next suppose that Ax = (r1x1 + r2x2, -r2x1 + r1x2 , r3X3), where the r; are 
real, non-zero, and r1 ~ r3 . On S there are two critical points ( 0, 0, ± 1), and 
for each h = r3 • 

• There is one cycle on S, y3 = 0, and for it h = 21!"r1 I r2 I -i_ Again, it is easy 
to verify hypotheses (d) and (e) of Theorem 4. Since k = 1, (3.3) has a forced 
oscillation in each of these cases. We do not examine here the other possibilities 
for Ax. 

Example 2. Consider the system 

(3.4) i = 1, 2, 3, 

where the r; are real and non-zero, k = 2s + 1 for some positive integer s, and 
the e;(x, t) are polynomials in x of degree no greater than k - 1 with continu
ously differentiable coefficients which have period 1 int. If the r; have a common 
sign, it can be shown that there are on S twenty-six critical points, all elementary, 
and no cycles. If the r; do not all have a common sign, it can be shown that on 
S there are no cycles and ten critical points, again elementary. In either case, 
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the hypotheses of Theorem 4 can be verified. Since k is odd, it follows that (3.4) 
has a forced oscillation. 
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