
NOTE ON A THREE-DIMENSIONAL SINGULARITY OF A 
CONTINUOUS VECTOR FIELD 

BY SAMUEL BAROCIO 

In a note which appeared in "Contributions to the Theory of Nonlinear Os
cillations," Vol. II, 1952, S. Lefschetz proved in a very elegant way that for two~ 
dimensional singularities of analytical systems there are only five possible typ
ical sectors, namely: 

I. Fans, in which the trajectories all tend to the critical point or all away 
from it. The nodes are particular cases of fans. 

II. Hyperbolic Sectors. The trajectories approach the singular point and 
then leave it. 

III. Nested Oval Sectors. The trajectories issue from the origin and then 
reenter to it. 

IV. Foci. The trajectories approach or leave the origin spiraling. 
V. Centers. The trajectories in the neighborhood of the origin are all closed. 

The outstanding feature of the above mentioned note is that the treatment 
rests chiefly on pure geometrical, i.e. topological, arguments. Now, extending 
these methods to the three dimensional case, one is tempted to think that here 
the a priori possibilities of the behaviour of the trajectories are the same. But 
unfortunately the situation in three dimensions is quite different; this is so 
because in two dimensions the basic tool is the Jordan curve theorem, but in 
three dimensions the possible geometrical structures are more complicated. 

In the two dimensional cases the sectors are made up with families of curves 
which are homotopic among· themselves, and in such way that during the homo
topy they do not leave the family. 

Now this condition cannot be taken for granted in three dimensions because, 
in this case, there arises the possibility of an infinite family of closed trajec
toqis in every neighborhood of the origin which are knots. We are going to con
struct here an example of this sort in the case of a continuous field. 

Let us conside:r the neighborhood of the origin in a rectangular system of 
coordinates x, y, z. Now, draw two lines AA' and BB' on the plane yz (fig. 1), 
making an angle a with the y-axis, and divide the triangular region OAB with 
vertical lines aa', bb', cc', • • • in such way to have 

Oa Ob Oc 
Ob - Oc - Od - • = K, 

i.e. an infinite family of similar triangles Oaa', Obb', • • • . Now revolve the zy 
plane around the z axis; then the trapezoidal area aa'b'b describes a solid torus. 
The same happens with all the remaining trapezoids. Take now a braided knot, 
for example the well known one of figure 2. Of course it may be much more 
complicated, but what we want is that every loop be described in the same sense. 
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Now imbed the knot as trajectory in the torus described by aa'b'b. Then this 
trajectory crosses the trapezoid at as many points as the knot has loops, and 
all the crossings have the same sense. Now let us divide the trapezoid aa'b'b into 
as many cells as there are crossings, making the intersection of the knot con
tained in the interior of the cell (fig. 3a) . One easily realizes that these parti
tions can be extended continuously around all the solid torus by imagimng the 
knot replaced by a thin tube. If one blows this tube till it fills the solid torus, 
then the intersections of the walls of the blown tube and the trapezoids are the 
boundaries of the cells. Take now a local frame of reference x' y' z' on one cell 
such that O' x' and O' y' be in the plane of the cell and Oz' be normal to this plane, 
where O' is the intersection with the knot and V the unit tangent vector to it 
(fig. 3b). 

Now extend the vector field to fill the cell, projecting V on the three axes of 
the local system and varying along the line Ox' the z' projection linearly from its 
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value at O' to 1 on the boundary of the cell and the x' and y' projections from 
their values at O' to O on the boundary. Make the same with all the remaining 
radii. Then we have extended the vector field to all the cell, the vector on the 
boundary of the cell being of unit length and normal to the cell plane. Hence 
we have filled each trapezoidal torus described by a a' b' b with a continuous 
field which on the boundary of the torus is the fibration determined by its 
parallels. 

Repeat now this construction by similarity for the infinite family of tori. 
Now we have filled the space between the two cones generated by AA' and BB'. 
On these two cones the field is normal to the generatrix in each point. Let B be 
the angle of Oy and OC (fig. 1), and define the field on the cone generated by OC 
as being tangent to the cone and making an angle with the generatrix OC which 
varies linearly from 1r /2, when /3 = a, to 0, when /3 ,;; 1r /2. Hence there are two 
trajectories that enter to the origin along the z axis: on the cones generated by 
the OC type lines the trajectories enter to the origin spiraling on the cone; on 
the cones generated by AA' and BB' the trajectories are circles. In each torus 
there is at least one knotted trajectory, and the unclosed trajectories are wander
ing. It is clear that this field can be "smoothed" in order that it be not only 
continuous but continuously differentiable. 

An interesting modification of our example can be made by taking a segment 
like OD that cuts every knot in one point (segments of this kind exist because 
of the similarity construction) and contracting it toward the origin continuously 
in such a way as to obtain an identification transformation, that is to say, a 
topological transformation in the complement of the OD segment. In this case 
the knots are transformed into trajectories which issue from the origin; then 
they knot with themselves and finally reenter the origin. 
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