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Section 1 

Generally speaking, the subject of this research is the study of certain proper
ties of linear and quasi-linear differential equations by means of methods of 
functional analysis. The results obtained so far have been published in part; 
other results are in course of publication and there are several problems which 
are still under investigation. 

The equations considered are 

x + A(t)x = 0 

x + A(t)x = f(t) 

x + A(t)x = h(x, t) 

(1) 

(2) 

(3) 

where xis an element of a Banach space X; A(t) an endomorphism of X and 
f(t) an element of X, both being functions of the real independent variable 
t E J = [O, oo ), (Bochner) integrable in each finite subinterval; :t = dx/dt; 
ha function, generally non-linear, from X X J into X, which satisfies adequate 
regularity and boundedness assumptions. 

A central problem in our work is the following: under what conditions is it 
true that (2) has at least one solution belonging to a given Banach function 
space D (a D-solution) for each f E B, where B is another given Banach func
tion space? If such is the case, we shall say that the pair (B, D) is admissible 
with respect to (2). The function spaces considered belong to the classes studied 
by J. J. Schaffer in [14], among which are all Orlicz spaces and a fortiori the 
spaces LP, 1 s p S oo; the main properties of these classes will be explained 
in Part 2 of this report. The special case B = D = C, the space of bounded 
continuous functions in J, X being of finite dimension and A continuous, was 
studied by Perron [11], who may accordingly be considered as a pioneer in thie1 
field. Certain papers by Persidski't [12], Malkin [5], Mafael' [4], Krefo [2] and 
Kucer [3] are also related to this subject; the last two use to a certain extent 
functional-analytic methods. 

The incidence of functional analysis in our work arises from three different 
sources: 

a) From the fact that X is a Banach space, the dimension of which is 
generally infinite. However this is neither the most important application of 
functional analysis nor the essential reason of the generality of the theorems 
proved; almost all theorems retain their significance in the case where X is a 
finite-dimensional Euclidean space. 

* Presented by J. L. Massera. 
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b) From the application of category theorems of functional analysis ( even 
ifdimX < oo). 

c) From the properties of the classes of function spaces considered. 
Similar remarks can be made concerning the substitution of the usual con

tinuity conditions by assumptions of the type of Caratheodory's. The theorems 
would indeed retain all their value if they were stated under continuity hypothe
ses. Many proofs are however formally much simpler under the more general 
assumptions. 

Section 2 

In order to explain the essential features of the function spaces considered, 
we state the following definitions. 

Given two linear topological spaces F, G, we shall say that Fis stronger than 
G (G weaker than F) if and only if F is algebraically a linear manifold in Gan 
F-convergence implies G-convergence. It should be borne in mind that these 
relations are not strict, i.e. each space is stronger (weaker) than itself; strict 
relations are accordingly denoted by the negatives not stronger (weaker) than. 
If F, Gare Banach spaces, the usual category argument shows that the relation 
"F is stronger than G" is equivalent to F c G. 

The space L is the Frechet space of all real-valued measurable functions 
(modulo null sets) on J with the topology of convergence in the mean on each 
finite subinterval. 

A linear normed function space F of real-valued measurable functions on J 
shall be called a ::!-space if the following assumptions are satisfied: 

a) Fis stronger than L; 
b) if cp E F and if; is any measurable function such that I y;(t)[::; I cp(t)[ 

a.e., then if; E F, I if; IF ::; I 'P IF (where I IF denotes the F-norm); 
c) F ~ {0}; 
d) if cp E F and if; is the function defined by y;(t) = cp(t - -r) fort :2:: -r, 

= 0 for 0 ::; t ::; -r, where -r > 0, then if; E F and I if; I F = I cp I F ( if; may be 
termed a right-translation of cp). 

If the following additional assumption is satisfied: 
d*) If cp E F and if; is the function defined by y;(t) = cp(t + r) fort :2:: 0, 

where r > 0 ( if; is a left-translation of cp), then if; E F, 
we shall say that F belongs to the class ::i* which is thus a subclass of ::l. 

A space F E ::l is said to be locally closed if and only if its unit sphere is closed 
in L. 

The definitions given so far extend as follows to spaces of functions with values 
in a Banach space X: the space F ( X), where F E ::l ( or ::i*), consists of all func
tions f: J -+ X which are strongly measurable and such that the real-valued 
function II f II (defined by II f [[(t) = II f(t)[[) belongs to F; F(X) is normed by 
If I FCX) = 111 f [[ IF . With this definition F = F(R), R being the space of 
real numbers. The argument X will be omitted when confusion is unlikely. 

The relation "stronger than" induces a partial ordering in the class::!. It turns 
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out that the weakest space in 3(3*) is the locally closed Banach space M of all 
measurable functions <p such that sup J:+ 1 I 'P( r) I dr < oo, with this su-

t EJ 

premum as norm. Among all locally closed 3*-spaces there is a strongest one, 
namely the Banach space T consisting of all measurable functions <p such that 
I::=o ess sup I 'P(t) I < oo, with a suitable norm. Orlicz spaces (in particular, 

nc<;tc<;n+l 

LP spaces, 1 ~ p ~ oo ) are a subclass of the locally closed 3*-spaces; the 
set-theoretical intersection and the algebraic sum of L1 and L 00

, with suitable 
norms, are, respectively, the strongest and weakest of all Orlicz spaces. 

In relation to our definition of an admissible pair, it is convenient to introduce 
a partial ordering of the 3-pairs (B, D), i.e. pairs consisting of a 3-space Band 
a 3*-space D: (B1 , D1) is stronger than (B2, D2) if and only if B1 is weaker than 
B2 and D1 is stronger than D2 . Since a stronger space contains fewer functions, 
it is clear that "(B1 , D1 ) is admissible with respect to (2)" is a stronger as
sumption on (2) than "(B2 , D2) is admissible". 

Section 3 
A selection of typical results from [9], which includes as very special cases 

several theorems of [6], is the following: 

LEMMA 1. If fn-. J, Xn---> x (L-convergence) and if Xn + A.(t)xn = fn(t) for 
each n, then xis (modulo null sets) a solution of (2) and the limit Xn---> xis uni
! orm on each finite interval. 

The Lemma says that the linear mapping x---> x + A(t)x, defined for any 
indefinite integral x(t) of a function x E L, has a closed graph in the L-topology. 

THEOREM 1. If Xon denotes the linear manifold of the initial values of all D
solutions of (1), Xon is closed if and only if there exists a positive number S such 
that, for every D-solution, Ix In ~ S II x(0) II . 

THEOREM 2. If (B, D) is an admissible pair of Banach function spaces, there is 
a positive number K such that, for each e > 0 and f E B, there exists a D-solution 
x(t) of (2) such that Ix In ~ (K + e) If I B. 

The proofs of Theorems 1 and 2 are based on category arguments. 
In what follows, to simplify the statements, we shall assume that dim X < 00 , 

wherefore Xon is always closed; we shall denote by Xm any complementary 
subspace of Xon . These restrictions are not essential, except that, if dim X = oo, 
it must be assumed that Xon is closed (but not necessarily that it has a comple
mentary subspace). 

THEOREM 3. If ( B, D) is an admissible 3-pair, there exist positive functions 
Mo(t..), M~(A) of A > 0, respectively non-increasing and non-decreasing, such 
that, if t 2: to 2: 0, 

(i) for any solution x(t) of (1) with x(0) E Xon (any D-solution) 

Jt+i:. 1t 0+i:. 

[lx(r) lldr ~ Mo(A) [lx(r) II dr 
t _ to 

IXct,t+i:.1 X In ~ Mo(A) I X[t 0 ,t 0+i:.J X In, 
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(XE being the characteristic function of the set E c J); 
(ii) for any solution x(t) of (1) with.x(0) E Xm 

f
t+a . fto+a 

llx(T) lldT ~ M~(d) llx(T) lldT, 
t to 

IX[t,t+aJ xln ~ M~(d) IX[to,to+al Xln-

THEOREM 4. If the 'J-pair (B, D) is admissible and not weaker than (L1, L:) 
(L:: the subspace of L 00 consisting of the functions x with ess limt--.oo x(t) = 0), 
there exist positive functions M ( d), M' ( d), respectively non-increasing and non
decreasing, and numbers v, v' such that, if t ~ to ~ 0, 

(i) for any solution x(t) of (1) with x(0) E Xon (any D-solution) 

f
t+a fto+a 

llx(T) lldT :s; M(d) e-•<t-to) llx(T) lldT, 
t to 

I X[t,t+aJ x In :s; M(d) e-•<t-to) I X[t0 ,t0+aJ x In; 

(ii) for any solution x(t) of (1) with x(0) E Xm, 

f t+a fto+a 
llx(T) lldT ~ M'(d) e•'<t-to\ llx(T) lldT, 

t to 

IX[t,t+M xln ~ M'(d) e•'<t-to) IX[to,to+M x In, 

The type of behavior of the solutions of (1) which is described by (i), (ii) of 
Theorems 3 [4] may be conveniently labeled uniform [exponential] conditional 
stability in the mean (in the case of integrals) or in slices (in the other case). 
In the following two theorems a more precise "pointwise" type of behavior.is 
considered, which is described in the following definitions: 

We shall say that two complementary subspaces Yo, Y1 of X (the definition 
can be extended also, if dim X = oo, to the case where Yo has no complementary 
subspace) induce a dichotomy of the solutions of (1) if positive constants No, 
N~, 'Yo exist such that: 

(Di) for any solution x(t) of (1) with x(0) E Yo, and any t ~ to ~ 0, 
II x(t) II :::; No II x(to) II ; 

(Dii) for any solution x(t), x(0) E Y1, II x(t)IJ ~ N~ II x(to)II, t ~to~ 0; 
(Diii) for any pair of non trivial solutions xo(t), x1(t), Xi(0) E Y,, i == 

0, 1, ,y[xo(t), x1(t)] ~'Yo, t ~ 0 (where ,y[x, y] = II x II x II - 1 -'--'J) [I Y II - 1 II is the 
"angular distance", cf. [1]). 

We shall say that Yo, Y1 induce an exponential dichotomy of the solutions of 
(1) if positive constants N, N', v, v', 'Yo exist such that: 

(Ei) for any solution x(t) of (1) with x(0) E Yo, and any t ~ t0 ~ 0, 
II x(t) II :::; Ne'(t-to) II x(to) II ; 

(Eii) for any solution x(t) of (1) with x(0) E Y1, and any t ~ to ~ 0, 
ll x(t) II ~ N'e''(t-tol II x(to) II; • 

(Eiii) = (Diii). 
In the particular case Yo = X, the existence of a [exponential] dichotomy is 
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equivalent to uniform [exponential or asymptotic, both things being equivalent 
for linear systems] stability. In the general case, this type of behavior may be 
termed uniform conditional [exponential] stability. 

THEOREM 5. If the 'J-pair (B, D) is admissible and, moreover, is stronger than 
either (L1, L "') or A E M, the subspaces Xon , Xm induce a dichotomy of the solu
tions of (1). Conversely, if a dichotomy exists, (L1, L;;") is admissible (and any 
weaker pair) .' • • 

THEOREM 6. If the 'J-pair (B, D) is admissible and not weaker than (L1, L~) 
and if a dichotomy exists (in particular, if A E M), the subspaces Xon, Xm 
induce an exponential dichotomy of the solutions of (1). Conversely, if an exponen
tial dichotomy exists, the following pairs are admissible (among many other "strong" 
pairs): (M, L"'), (Mo, L~), (L1, T) (Mo: the subspace of M consisting of the 
functions <p with lim,__.oo f; +i I rp ( r) I dr = 0). 

Section 4 

The following selection of theorems may give an idea of other problems which 
have been investigated with these methods: 

a) Theorems pn the existence of almost-periodic solutions (essentially in 
[6], [10]): , I 

THEOREM 7. If the 'J-pair (B, D) is admissible and not weaker than (L1, L;;") 
and if A ( t) is. almost-periodic, for each almost-periodic f equation ( 2) has one and 
only one almost-periodic solution. 

b) Theorems on non-linear equations ( essentially in [6]) : 

THEOREM 8'. Let (B, D) be an admissible 'J-pair and h(x, t) a function defined 
fort E J, x E X, II x II < a (0 < a ::; oo ), with values in X, such that for any 
function x E D n L "', Ix loo < a, we have h(x(t), t) E B. Let (3 = I h(0, t) IB 
and assume that there exists a positive constant A such that for any pair x', 
x" E ' D n LC()' I x' IC() ' I x" IC() < a, we have 

I h(x'(t), t) - h(x"(t), t) IB::; Al x' - x" In. 

Then, if (3, A are small enough, a positive number b exists such that for any ~o E Xon, 
II ~o II < b, there is one1and only one solution x(t, ~o) E D of (3) such that x(0, ~o) = 
~o + ~1 , ~1 E Xm . • 

COROLLARY. Let (B, D) be an admissible 'J-pair, not weaker than (L1, L;), 
and assume A E M. Let h(x, t) be defined fort E J, x E X, 11 x II < a; assume 
that, for each fixed x it is a bounded continuous function of t and that there is a 
positive constant A such that II h(x', t) - h(x", t) II ::; Ail x' - x" II for any x', 
x" E X, II x' II, II x" II < a, t ?: 0. Then the conclusion of Theorem 8 holds, with 
D replaced by C. 

THEOREM 9. Assume that Xis reflexive and that an exponential dichotomy of the 
solutions of (1) exists. Let h(x, t) be a weakly continuous function from X X J 
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into X ( i.e. a function which is continuous when X is endowed with the weak topol
ogy); assume that II h(x, t) II :::; cp( II x II), c,o(r) being a function defined and con
tinuous for r ~ 0, c,o(r) = o(r) as r........, oo. Then, for each lo E Xoc, equation 
(3) has at least one bounded solution x(t, lo) such that x(0, ~o) = ~o + h, li E Xie-

Similar results hold for the existence of almost-periodic solutions of ( 3), cf. 
[6], [10]. 

c) "Roughness" theorems ( essentially in [6]): 

THEOREM 10. Let (B, L "") be admissible and B E B(X) (X: the space of endo
morphisms of X). Then, if I B IB is small enough, (B, L 00 ) is admissible for the 
equation x + (A(t) + B(t) )x = f(t). 

d) Theorems on Lyapunov's second method [8]: 

THEOREM 11. A necessary and sufficient condition for the existence of an ex
ponential dichotomy is that a (generalized) Lyapunov function V exist with an 
infinitely small upper bound and such that V' ( the total derivative by virtue of ( 1)) 
is a definite function. 

THEOREM 12. A necessary and sufficient condition for the existence of a dichotomy 
is that two non-negative junctions Vo, Vi exist, which are positively homogeneous 
of the same degree and such that Vo + Vi is positive definite and has an infinitely 
small upper bound and V~ ::::; 0, V~ ~ 0. 

e) Theorems on periodic equations ( which are essentially new only if 
dim X = oo ) [7] : 

THEOREM 13. If A (t) is periodic of period 1 and I A IM < log 4, there exists a 
Floquet representation of the solutions of ( 1 ) : x ( t) = P ( t) e tB xo , with P periodic 
of period 1, B constant. 

Such a representation is not always possible; there are counterexamples with 
I A IM exceeding 71" by an arbitrarily small number. 

THEOREM 14. Let A ( t) be periodic of period 1 and assume that the closure of 
Xoc is reflexive. If, for some f periodic of period 1, equation (2) has a bounded 
solution, it has a periodic solution of period 1. 

THEOREM 15. If (B, D) is an admissible 'J-pair, not weaker than (L1, L~), and 
if A(t), f(t) are periodic of period 1, there is one and only one solution of (2) which 
is periodic of period 1. 

f) Theorems on equations with constant coefficients (generalizations to 
the infinite-dimensional case) [13]. 
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