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Section 1 

The purpose of the present note is to point out some important results of N. 
Bogoliubov and Y. Mitropolski ([1]) (which seem not to be well known in this 
country) on the existence of integral manifolds of differential systems. The re
sults in [1] are stated in terms of a particular problem, but the proofs of these 
results apply to a much larger variety of questions. In this paper, we shall try 
to mention only those generalizations which are essential to make an associa
tion with some recent results of various authors in this country, and postpone 
a more complete discussion of the generalizations to a later paper ([5]) In 
particular, we will mention some aspects of the work of N. Levinson ([9]), S. P. 
Diliberto and his colleagues ([2], [3], [4], [6], [7], [9], [11], [12]). We begin by dis
cussing two types of problems, one considered by N. Krylov and N. Bogoliubov 
([8]) and the other considered by N. Levinson ([10]). 

Section 2 

The motivation for the discussion in [1] stemmed from a paper in 1934 by N. 
Krylov and N. Bogoliubov [8] on the "method of averaging" as applied to sys
tems of weakly nonlinear differential systems. Consider the system of equations 

(1) d;;: + wJ Zj = eZ; ( t, Z1, ···,Zn, ~t, · · ·, d;;), j = 1, 2, • • ·, n. 

By a simple calculation, the transformation of variables, 

Z; = X2j-1 exp (iwjl) + X2j exp ( -iwjl), 

dzi/dt = iw;X2H exp (iw_;t) - iwi exp ( -iwit), j = 1, 2, • • • , n, where 
X2j-1, X2j are complex conjugate, leads to an equivalent system of equations, 
dx2;-i/dt = +e(2iwi)- 1Zi exp (iwit) == eX2j-1(t, X1, • • • , X2n), dx2;/dt = 

-e(2iwi)- 1Zi exp (iwit) == eX2;(t, x1 , • • • , X2n), j = 1, 2, • • • , n. The 
functions Xi could be very complicated functions of t. Even in the case where 
the original Z i are independent of t, the functions Xi are generally almost peri
odic in t with basic frequencies w1 , • • • , wn . 

By the above simple transformation, one can therefore always discuss the 
behavior of the solutions of a system of the form (1) by discussing the be-
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havior of general systems of equations of the form dx/dt = eX(t, x), where 
x, X are m-vectors. We may also assume X(t, x) is real. The Krylov-Bogoliubov
Mitropolski method of averaging consists in first supposing that Xo(x) = 
limT__,00 T- 1ff X(t, x) dt exists and then considering the equation dx/dt = 
eXo(x) as the equation of the first approximation to a solution of the original 
equation. The important question is the following: Under what conditions are 
the qualitative behavior of the solutions of the first approximation and the 
original equation the same? This is partially answered by the following theorems 
of Bogoliubov and Mitropolski [I]. A vector function f(t, x) is said to be almost 
periodic int uniformly with respect toxin a set A, if for any 'f/ > 0, it is possible 
to find an Z( 'f/) such that in any interval R, of length l( rJ), there is a r, l( rJ) and 
r independent of x, such that the inequality II f(t + r, x) - f(t, x) II ::; rJ is 
satisfied for all real t and x E A. 

THEOREM 1. Suppose the function X ( t, x) contained in the equation, 

(2) dx 
dt =eX(t, x), 

where x, X are n-vectors, satisfies the following conditions for x contained in 
some open set un: 

a) X ( t, x) is an almost periodic function of t uniformly with respect to x; 
b) X ( t, x) and its partial derivatives of first order with respect to x are 

bounded and uniformly continuous for - oo < t < + oo, x E Un. Also, sup
pose that the equation of the first approximation 

(3) 
dx 
- = eXo(x) 
dt ' 

(4) I 1T Xo(x) = lim -T X(t, x) dt, 
T-Cf'J 0 

has a constant solution x0 and the real parts of the characteristic roots of the 
linear variational equation of x0 are different from zero. Under these conditions 
it is possible to find positive numbers eo , <To such that for every e, 0 < e < eo , 
the following conclusions hold: 

i) Equation ( 2) has a unique solution, x = x* ( t), which is defined in 
( - oo, + oo) and for which II x*(t) - x0 II ::; <To ; moreover x*(t) is almost 
periodic with the same basic frequencies as the function X(t, x); and, further, 
llx*(t) - x0 II::; o(e), o(e)-o as e-.O, -oo < t < +oo; 

ii) The stability properties of the solution x0 of (2) are the same as the 
stability properties of the solution x0 of ( 3). 

THEOREM 2. Suppose that system (3) has a periodic solution x0(ewt), x0 (s) = 
x0 ( s + 1r) and the real parts of n - I of the characteristic exponents of the 
linear variational equation of x0 ( ewt) are different from zero. Also, suppose that 
the function X ( t, x) satisfies condition a) of Theorem 1 in a p-neighborhood, 
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Up, of the periodic solution x0 and has partial derivatives with respect to x 
of the second order which are bounded and uniformly continuous with respect 
to x for - oo < t < + oo, x E Up. Under these conditions it is possible to find 
positive numbers Eo, <To, <To < p, such that for every E, 0 < E < Eo, the following 
conclusions hold: 

i) Equation (2) has a unique integral manifold S, lying for all real t in 
Uu0 , having a parametric representation, 

(5) X = f(t, 0, E), 

defined for all real t, 0, periodic in 0 of period 1r and almost periodic in t uni
formly with respect to 0 with the same basic frequencies as those of X ( t, x) ; 
and IIJ(t,0, E) - x0 (0) II:::; o(E),o(E)-OasE-O, -oo < t < +oo, -oo < 
0 < + oo. Also, f(t, 0, E) has uniformly continuous derivatives with respect to 
0 up through second order. Furthermore, there is a function F ( t, 0, E), defined 
for all real t, 0, periodic in 0 of period 1r and almost periodic in t uniformly with 
respect to 0 possessing continuous derivatives through the second order such 
that equation (2) is equivalent to the equation 

d0 
(6) 

dt 

on the manifold S. 
ii) If the cylinder of periodic solutions x0 ( Ewt + cp), cp an arbitrary con

stant, of (3) is stable, unstable, or conditionally stable with respect to a mani
fold of dimension s, then the integral manifold S of (2) is stable, unstable, or 
conditionally stable with respect to a manifold of dimension s.* 

Let us briefly summarize the method of proof of Theorem 2 used by Bogoliu
bov and Mitropolski. Since m - I of the characteristic exponents of the linear 
variational equation with respect to x = x0( Ewt) have nonzero real parts, there 
exists a transformation of variables x--, (s, h), s a scalar, h an (m - 1)-vector, 
such that (2) is equivalent to a system of the form 

(7) 

ds 
dt - Ew + ES1(s, h) + ES2(t, s, h) 

dh 
dt 

* Suppose dx/dt = X(t, x) is a nth order differential system and suppose that Sis a 
manifold of solutions of this equation of dimension min the (n + 1)-dimensional (x, t)
space. The manifold S will be said to be stable if there exist neighborhoods U, , U 2 of 
dimensions n + I of the manifold S, U, C U2, such that for every solution x(t) of the 
above equation with x (t 0) E U1 , we have x(t) E U 2 for all t :::: t 0 and x (t) --, S as t --, +co. 
If for every x(t) with x(t 0) E U1 - S, we have x(t) --H- Sas t--, oo, then Swill be said to be 
unstable. If U1 is of dimension s < n + 1, and if for every x(t) with x(to) E U, we have 
x(t) E U 2 fort > t 0 and x(t) --, S as t--, co, and x(to) E U 2 - U, implies x(t) --H- S as t --, oo, 
then S will be said to be conditionally stable with respect to a manifold of dimension s. 
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for. II h II :::;; rr, rr > 0, where the eigenvalues of the constant matrix H are the 
nonzero characteristic exponents of the linear variational equation. Furthermore, 
the vectors Sj, Hj, are periodic ins of period 1r, S1 = 0( II h 112), H1 = 0( 11 h 112) 
as II h II -. 0, S2 , H2 are almost periodic in t, uniformly with respect to s, h, 
- 00 < s < + 00 , II h II :::;; rr, and satisfy the relation 

1 1T 1T (8) lim -T S2(t, s, h) dt = 0, lim H2(t, s, h) dt = 0. 
T-oo O p....;,.rx, 0 

In these new coordinates ( s, h), the periodic solution x0 ( ewt + cp) of ( 3) is 
given by h = 0, s = ewt + cp. 

Now the proof of Theorem 2 will be complete if it can be shown that there 
exists for e sufficiently small, a unique manifold of solutions of (7) of the form 
h = j(t, 8, e) where f(t, 8, e) is periodic in 8 of period 1r, almost periodic in t 
uniformly with respect to 8, e, approaches zero uniformly as e-. 0 and has cer
tain stability properties. One of the principal difficulties lies in the fact that the 
terms eS2 , eH2 are not small (i.e., higher order in e or higher order in h) com
pared with the terms ew and eHh. 

The next step of the proof consists in finding functions u(t, s, h, e), v(t, s, h, e) 
such that the transformation of variables, s = 8 + eu(t, 8, z, e), h = z + ev(t, 
8, z, e), transforms (7) into an equivalent system 

(9) 

dB dt = ew + eE>(t,8,z,e), 

dz 
dt = eHz + eZ(t, 8, z, e), 

where El, Z are periodic in 8 of period 1r, and El = 0( I e I + ( I e I + II z II )2) Z = 

O( I e I + ( I e I + II z II )2) as I e I -. 0, II z II -. O; i.e., the functions e, Z are 
small as compared tow, Hz when I e I, II z II are small. Now, the change of vari
able -r = "t yields the equation 

dB 
dr = w + E>(r, 8, z, e), 

(10) 
dz 
dr =Hz+ Z(r, 8, z, e). 

It is then shown that this equation has an integral manifold of the form z = 

j(t, 8, e), j(t, 8, e) periodic in 8 of period 11' and almost periodic int uniformly 
with respect to 8, e and 

llf(t, 8, e) II:::;; D(e), 
II j(t, 81,e) - j(t, 82' e) II :::;; ~(e)I 81 - 82 I 

(11) 

for all t, 8, 81, 82 and D(e), ~(e)-. 0 as e-. 0. The stability properties of this 
manifold are established, thus proving Theorem 2. It is probably instructive to 
review the proof of these last results. 
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The idea is to consider a class of "generalized cylinders" e(D, .6.) = {F(t, 0, 
E) IF is an (m - 1)-vector, F(t, 0, E) = F(t, 0 + 1r, E), II F(t, 0, E) II ::::; D, 
II F(t, 81, E) - F(t, 82, E) II ::::; .6.I 81 - 82 I for all t, 0, 01, 82, 0 < E ::::; Eo}, 
A transformation, obtained from the differential system, is defined which maps 
each member of e(D, .6.) into a member of e(D, .6.) and by choosing D, .6. as 
convenient functions of E, this map is a contraction. Therefore, it has a fixed 
point, which is an integral manifold of ( 10). The almost periodicity in t and the 
stability properties are then deduced from the fact that this fixed point satisfies 
the differential equation. One interesting thing to notice is that since the map 
is a contraction, the integral manifold can be calculated by successive approxi
mations. 

Section 3 

Let us now turn to a consideration of the problem of N. Levinson ([10]). 
Consider the vector differential system 

(12) 

where Eis a real parameter and X(x), X(t, x) are sufficiently smooth. In 1951, 
N. Levinson discussed system (12) for the case where X(t + 1r, x) = X(t, x) 
and showed that if (12) for E = 0 has an asymptotically orbitally stable periodic 
solution ( m - 1 of the characteristic exponents of the linear variational equa
tion have negative real parts), then (12) for E ~ 0, but sufficiently small, has 
a two dimensional torus of solutions which is asymptotically stable. Let us 
briefly review the method used by Levinson to prove the above results. 

For E = 0 in (12) the periodic solution is a limit cycle, C, in x-space. In 
(x, t)-space the limit cycle becomes a cylinder parallel to the taxis and the cylin
der is generated by all solutions of (12) for E = 0 which start at t = 0 on the 
limit cycle and are regarded as curves in (x, t)-space. Since this cylinder is 
stable, it seems plausible for E ~ 0 and sufficiently small that there will be a 
unique cylinder, S, depending on E, and equal to the original one for E = 0 
which is stable. Furthermore, if X ( t, x) is periodic in t of period T, then one 
suspects that the cross sections of S at t = 0 and t = T should be congruent. 
Because of the periodicity of X ( t, x), one can, therefore, identify the cross sec
tions to obtain a torus. 

This last remark is the motivation for the technique of proof used by Levin
son. More specifically, suppose F is a family of closed curves in x-space which 
are "very close" to the limit cycle, C. A transformation V, is then defined which 
maps each member of Finto a member of F, namely, V of a point Pis x(T) 
where x(t) is a solution of (12) with x(O) given by P. It is then shown that V 
has a fixed point in F. 

This theorem follows very easily from the results mentioned in section 2. 
In fact, by introducing new coordinates (0, h), 0 a scalar, h an (m - 1) vector, 
in a neighborhood of the limit cycle, C, as in the discussion preceding formulas 
9 and 10, one obtains a system of equations of the form (10) with the eigeh-
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values of H having negative real parts and e, Z periodic int. The above result 
of Levinson then follows immediately and one can prove even more. In fact, 
the function X ( t, x) need not be periodic in t, but may be almost periodic in t 
uniformly with respect to x and the eigenvalues of H need only have nonzero 
real parts. It has been shown ([16]) that the method of Levinson can be ex
tended to the case where H has eigenvalues with nonzero real parts, but the 
method of proof does not seem to be generalizable to the case of arbitrary al
most periodic functions of t. 

Recently, using the geometric idea of the proof of Levinson as a starting point, 
S. P. Diliberto and his colleagues ([2], [3], [4], [6], [7], [9], [11], [12]) have been 
studying a more general perturbation theory where the objects of interest are 
not necessarily surfaces which are homeomorphic to the topological product of 
two circles as in Levinson's paper, but are homeomorphic to the topological 
product of k circles (periodic surfaces). The systems that have been discussed 
thus far by Diliberto, et. al., are of the form 

(13) 

:~ = d + E[d(t, 0) + @*(t, 0, Y, z, E)] 

dy 
dt = Ea(t, 0) + EC(t, 0)y + EY(t, 0, y, z, E) 

dz 
dt = A(t, 0)z + Z(t, 0, y, z, E) 

where 0, y, z are vectors; all of the functions are periodic int, 0; and the functions 
@*, Y, Z satisfy the smallness conditions imposed on e, Yin (10) when I EI, 
11 y II, II z II are small. System (13) is much more general then the system (10) 
in the sense that the vector equation in y and the functions d(t, 0), a(t, 0) are 
introduced and the matrices C(t, 0), A(t, 0) are not constant. However, all 
functions are periodic int. In case a(t, 0) = 0 = d(t, 0) and C(t, 0), A(t, 0) 
are constant matrices, it is not very difficult to generalize the results of N. 
Bogoliubov and Y. Mitropolski to systems of the type (13), thus eliminating 
the restriction that the functions be periodic in t. When this is done one obtains a 
generalization of the result of W. T. Kyner ([9]). This generalization will appear 
in [5]. 

If f ( s) is periodic in the vector s with a period w, then define J( s) by the rela
tion J(s) = limT .... oo T- 1J'{, f(s + t) dt. In [2], Diliberto has discussed general 
systems of the type (13) under various conditions on the functions a(t, 0), 
d(t, 0), C(t, 0), A(t, 0) and shown the existence of periodic surfaces. It is im
portant in the applications to consider these more general systems as one can 
easily see by studying the original paper of N. Krylov and N. Bogoliubov [8]. 
In [5] the author discusses this more general situation along the lines of Bogoliu
bov and Mitropolski and, therefore, allows the functions in ( 13) to be almost pe
riodic in t. However, we do not discuss this any further here since it would take 
us too far afield. 

RIAS, BALTIMORE, MARYLAND 
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