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1. Introduction and summary of results 

The purpose of the present note is to point out some of the results that can be 
obtained by applying the method of successive approximations of L. Cesari, 
J. K. Hale and R. A. Gambill to the determination of the characteristic ex
ponents of a special linear differential system with periodic coefficients. See the 
previous paper of L. Cesari, [61, for a description of this method, where also a 
topological interpretation is given in terms of a fixed point of an integral oper
ator. Also, the reader should consult [5] for a complete list of references on the 
implications of the method. In this note, we will also state some applications to 
the stability of periodic solutions of weakly nonlinear differential systems and 
to the boundedness of the solutions of linear differential systems. For the proofs 
and a number of further applications, see [11] and [12]. At the same time, we 
prove by a straightforward argument some results on the boundedness of solu
tions of linear periodic differential systems which had been previously obtained 
by the method mentioned above. This type of argument does not seem to be 
too well known in this country and, therefore, we think it is appropriate to 
include it here and, at the same time, it may help to clarify why a method of 
successive approximations may be useful for obtaining new boundedness the
orems. 

Consider a linear system of differential equations 

(1.1) y' = Ay + EC(t)y, 

where E is real, A, C are real matrices, A constant, C(t + T) = C(t), T = 

21r/w, w > 0, C(t) is L-integrable in [0, T], and the eigenvalues of A have simple 
elementary divisors. In the following we only speak of the absolutely continu
ous solutions of ( 1.1). If Y ( t, E) is a fundamental system ofreal solutions of ( 1.1) 
with Y(0, E) = I, then the characteristic multipliers, Pi = PiC E), j = 1, 2, • • • , 
N, of (1.1) are defined as the roots of the equation 

(1.2) det [Y(to + T, E) - pY(to, E)] = 0 

for any fixed to. It is known ([13]) that the roots of this equation are inde
pendent of to and, in particular, for to = 0, 

(1.3) det [Y(T, E) - pl] = 0. 
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The characteristic exponents, Ti= -r/E), j = 1, 2, • • ·, N, determined only 
up to a multiple of wi, are defined by 

(1.4) J = 1, 2, • • ·, N. 

The roots of (1.2) occur in complex conjugate pairs and, furthermore, each 
Pi(E) is a continuous function of Eat E = 0. In addition, the Pi(0) are the roots 
of the equation 

(1.5) det [eAT - pl] = 0 

Consequently, we know beforehand the multiplicity of a root p/0). Let pZ, of 
multiplicity nk, k = 1, 2, • • • , 11, 11 :::::. N, be the distinct roots of (1.5). Since 
the Pi(E) are continuous in Eat E = 0, it follows that there exist Eo, o such that 
in a o-sphere about pZ, there are exactly nk roots of ( 1.3) for O :::::. I e I :::::. Eo . 

Even with this more detailed information, it does not seem possible to apply 
directly the Floquet theory to reduce the order of the N X N matrix in (1.3). 

By using the method of successive approximations of Cesari, Gambill and 
Hale, one can show that it is possible to determine the Pi( E) in groups of nk 

at a time; i.e., nk of the p/E), namely, those for which Pi(0) = pZ, can be de
termined independently of the others. More specifically, if p iz ( 0) = pZ, l = 
1, 2, • • • , nk, then a matrix Bk of the dimension nk X nk is explicitly given whose 
eigenvalues determine the characteristic exponents Tfo l = 1, 2, • • • , nk, 

associated with Pii• In particular, if p/0) is a simple root of (1.3), then the cor
responding characteristic exponent is determined directly independently of the 
other characteristic exponents by the method of successive approximations 
mentioned above. 

There are two main types of problems associated with linear periodic sys
tems (1.1). First, there is the case in which the characteristic multipliers Pi(E) 
have modulus different from unity and then the solutions of (1.1) will be either 
unbounded or approach zero as t - oo, but no solution will be bounded in 
( - oo, + oo). For this case, the problem of stability can be decided by a finite 
number of successive approximations using the above method. On the other 
hand, if the Pi( E) have modulus one, i.e., the solutions are bounded in ( - oo, 

+ oo ) , then all the characteristic exponents are purely imaginary and all of the 
successive approximations must possess some special properties. L. Cesari ([4]) 
gave the first such boundedness theorems by using the above method of approxi
mations. In Section 2, we discuss further boundedness theorems (I Pi(E) I = 1) 
and in Section 3, we give some theorems which assure that the p/ e) have modu
lus less than one. 

2. Boundedness of solutions of linear periodic systems 

As mentioned in Section 1, we will prove some boundedness theorems without 
using successive approximations and hope that it will clarify why successive 
approximations are ultimately used and why certain classes of functions are 
introduced. 
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We will actually consider the more general system 

(2.1) y' = p ( t, E) y, 0 ~ t < + 00 , 

whereP(t + T, e) = P(t, e), T = 21r/w, w > 0,foreveryreal e,0 ~ I e I~ eo, 
eo > 0, is a matrix of order N whose elements Pik(t, e), J, k = 1, 2, • • • , N, 
are real functions of the real variables t, e, I Pik(t, e) I < 71(t) for all J, k, 0 ~ 
I e I ~ eo, where 71(t) is £-integrable in [0, T] and each Pik(t, e) is a continuous 
function of eat e = 0. The characteristic multipliers and exponents are defined 
exactly as in Section 1 and it is known for this more general situation that the 
multipliers are continuous functions of e at e = 0. If for each p which is a root 
of (1.3), p- 1 is also a root, then we say that system (2.1) is reciprocal. The theo
rems on reciprocal systems below and their proofs are essentially due to A. 
Liapunov ([13]). The same type of reasoning can also be found in I. G. Malkin, 
[14], and V. A. Yakubovic, [20]. 

THEOREM 2.1. If system (2.1) is reciprocal and Po, I po I = 1 is a simple char
acteristic multiplier of (1.3) for e = 0, then there exists an e1, 0 < e1 ~ e0 

such that there is a characteristic multiplier, p(e), of (2.1) with I p(e) I = 
1, p(0) = Po, 0 ~ I EI ~ E1. 

Proof. Since Po is a simple characteristic multiplier, it follows from the con
tinuity in e, that there exists an e1 such that the characteristic multiplier, p( e), 
with p(0) = Po is simple for 0 ~ I e I ~ e1. Since system (2.1) is assumed to 
be reciprocal, it follows that p-1( e) is also a characteristic multiplier. Further
more, ;o( e) is a characteristic multiplier. The conclusion of the theorem is now 
obvious. 

An immediate consequence of this theorem is 

CoROLLARY 2.1. If system (2.1) is reciprocal and the characteristic multipliers 
of (2.1) are distinct and have unit modulus for e = 0, then there exists an e1, 
0 < e1 ~ eo such that the solutions of (2.1) are bounded for - oo < t < + oo, 
0~lel~e1. 

THEOREM 2.2. If there exists a matrix B = B(e) of order N, continuous in e 
at e = 0, I det B( e) I ~ o > 0, 0 ~ I e I ~ eo, such that either of the following 
conditions are satisfied, 

(i) B(e)P(t, e)B- 1(e) = -P(-t, e), 0 ~ I el~ eo, -oo < t < +oo, 
(ii) B(e)P(t, e)B- 1(e) = -P*(t, e), 0 ~ I el~ eo, -oo < t < +oo, 

(P* is the transpose of P) 

then system (2.1) is reciprocal. 

Proof. Let Y(t), Y(0) = I be a fundamental system of real solutions of 
(2.1). If Z(t) is an N X N matrix solution of the adjoint equation 

(2.2) Z'(t) = -Z(t)P(t, e), Z(0) = Zo, 

then it is known that Z(t)Y(t) = Zol = Zo for all t. 
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(i) If B( E)P(t, E)B-1( E) = -P( -t, E), then Z(t) = y-1( -t)B-1( E) satis
fies the adjoint equation (2.2). Therefore, Y-1(-t)B- 1(E)Y(t) = B-1(E), or 
Y(t) = B(E)Y(-t)B- 1(E) and the characteristic equations det [Y(T) - pl] = 
0 and the equation det [I - }..-1Y( -T)] = 0 are the same. But, since Y(0) = I, 
these are two special cases of (1.2) with to = 0 and lo = -T. Therefore, the 
}.. are the reciprocals of the p and (i) is proved. 

(ii) If B(E)P(t, E)B-1(E) = -P*(t, E), then Z(t) = Y*(t)B(E) satisfies 
(2.2) and Y*(t)B(E)Y(t) = B(E); or, Y*(t) = B(E)Y- 1(t)B- 1(E). Since Y(t) 
is real, the characteristic equation of Y* ( T) is the same as the characteristic 
equation of Y(T) and the remainder of the proof of (ii) is obvious. 

As an application of the previous results, consider the system of equations 
n 

(2.3) xI + u;xi = EL 'Pik(t)xk , j = 1, 2, • • • , n, 
k=l 

where O"j > 0, j = 1, 2, • • • , n, the 'Pik(t) are periodic functions oft of period 
T = 21r/w and £-integrable in [O, T]. The transformation of variables Xj = Yi, 
x; = Yn+j, j 1, 2, • • • , n, leads to the equivalent system of equations 

(2.4) y' = A(t, E)y 

where A(t, E) = [Ajk(t, E)], j, k = l, 2, each Ajk(t, E) is an n X n matrix, 
An = 0 = A22, A12 = I, A21 = -u 2 + @(t), u2 = diag (ut • • • , u!), <I>(t) = 
[cpjk(t)], j, k = 1, 2, • • • , n. 

(i') If the matrix<I> can be partitioned as<I> = [<I>jk(t)], j, k = 1, 2, where 
<I>n is an m X m matrix, m:::; n, <I>22 is an (n - m) X (n - m) matrix and 
<I>ik(-t) = (-l)i+k<I>ik(t), j, k =l, 2, then BA(t, E) = -A(-t, E)B where 
B = diag (11, -I , -11, 12) where 11 is the m X m identity matrix and 12 
is the (n - m) X 2(n - m) identity matrix. 

(ii') If <I> is symmetric, then BA = -A*B where B = (Bik), j, k = 
1, 2, each Bik an n X n matrix with Bu = 0 = B22, B12 = I, B21 = -I. 

Therefore, from Theorem 2.1, equation (2.3) is reciprocal if either condition 
(i') or (ii') is satisfied. An immediate consequence of Theorem 2.1 and Corollary 
2.1 are the following results. 

THEOREM 2.3. If the matrix<I>(t) = ('Pik(t)), j, k = 1, 2, • • ·, n, associated 
with system (2.3) satisfies either (i') or (ii') and, in addition, 

(2.5) u1 ± u i ¢ 0 ( mod w), j = 2, 3, • • • , n, 

then there exists an E1 , 0 < E1 :::; Eo such that there are two linearly independent 
solutions of (2.3) bounded for - oo < t < oo, 0 :::; [ E [ :::; E1 . More specifically, 
there are two characteristic exponents of (2.3), r1(E), r2(E), continuous in E 
for 0 :::; [ E [ :::; E1 , which are purely imaginary and r1 ( 0) = iu1 , ri 0) = - iu1 . 

COROLLARY 2.3. If the matrix <I>(t) satisfies either (i') or (ii') and, in addi
tion, 

(2.6) 2uj ¢ 0, O"j ± O"k ¢ 0 (mod w), j 7"' k, j, k = 1, 2, • • ·, n, 

then the solutions of (2.3) are bounded for - oo < t < oo, 0 :::; [ E [ :::; E1. 
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These results have been obtained by L. Cesari [4] and .1. K. Hale [10] by 
using the same method of successive approximations mentioned above, and 
later by M. Golomb ( [9]) using another method of successive approximations, 
whereas the above reasoning is very straightforward. R. A. Gambill ( [7]) has 
other results which can be obtained in an elementary manner. M. Golomb ( [9]) 
has given another boundedness theorem for a different class of matrices <I>(t) 
which is too complicated to describe here. So far, the present author has not 
been able to determine whether or not this class of functions leads to a reciprocal 
characteristic equation. It would be of interest to answer this question. 

Now suppose that some of the conditions in (2.6) are not satisfied. Is it true 
that there are unbounded solutions of (2.3) no matter how small€ 7"' 0 may be? 
For the well-known Mathieu equation, x" + (a-2 + € cos wt)x = 0, it is known 
that, in the (u, €) plane, there are unbounded solutions in every neighborhood 
of the points (mw/2, 0), m = 0, l, 2, • • • . 

If the matrix <I>(t) satisfies condition (ii'), then it was shown by I. M. Gel
fand and V. B. Lidskii ([8]) that Corollary 2.3 is true if (2.6) is replaced by the 
condition <Ti+ <Tk ¢ 0 (mod w), j, k = l, 2, • • • , n. This same result has also 
been obtained by J. Moser ([17]), and, more recently, generalized somewhat by 
V. A. Yakubovic ([21]). The proofs of these authors use very strongly the fact 
that a fundamental system of solutions of (2.3) with condition (ii') satisfied 
belongs to the class of symplectic matrices. A simple reasoning of the type used 
in the previous pages is not of much assistance since a violation of one of the 
conditions in (2.6) implies that some of the characteristic multipliers of (2.3) 
are equal for € = 0, and the method is not delicate enough to distinguish be
tween the multiple roots. 

Suppose now that some of the conditions in (2.6) are not satisfied and the 
matrix <I>( t) satisfies (i'). Since it was not possible to find any algebraic properties 
of the fundamental system of solutions of (2.3), we made use of the method of 
successive approximations mentioned in the introduction to obtain many in
teresting results (see [12]). As an illustration, consider the simplest case where 
<I>(t) satisfies (i') and 

<T1 - <T2 = sw, 
(2.7) 

2<Tj ¢ 0, <Ti± <Tk ¢ 0 (mod w), 

j 7"' k, j, k = 2, 3, • • • , n, 

wheres is an integer or zero. Then it is shown that there exists a function H ( s, u1), 
which can be written down explicitly in terms of the Fourier coefficients of the 
matrix <I>(t), such that the solutions of (2.3) are bounded in a sufficiently small 
neighborhood of the point (u

1 
- sw, O) in the (u2, €)-plane if H(s, u

1
) > 0, 

and there are unbounded solutions of (2.3) in every neighborhood of the point 
(u1 - sw, O) if If(s, u1) < 0. If the matrix <I>(t) satisfies (i') and, in addition, 
is symmetric, then H(s, u1) > 0 for all s, u1 , which agrees with the general 
result of I. M. Gelfand and V. B. Lidskii [8] mentioned above. However, examples 
are given to show that H(s, u1) may be <0 for some matrices <I>(t) if cl> satisfies 
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(i') and is not symmetric. More specifically, if if>(t) = (cp;k(t)), j, k = 1, 2, 
cp11 = 2p cos t, cp12 = 2 cos t, cp21 = 2q cos t, cp22 = 2r cos t, where p, q, r are con
stants, and a-1 = a-2(0), a-1 independent of E, then the solutions are bounded in a 
neighborhood of the point ( a-1 , 0) in every neighborhood of this point if p + r ~ 
0, q < 0. 

As another application, let us consider the following result which has also 
been obtained by the above method of successive approximations. (See [23] 
for a proof and also a more general theorem. We state the simpler form of the 
theorem for brevity.) 

THEOREM 2.4. Consider the system of equations 

(2.8) 
x" + Ax = Eif>(t)x + EW(t)y 

y' = EP(t)x + EQ(t)y 

where x is an n-vector, y is an k-vector, A = diag (ui, • • • , u!), if>, w, P, Q 
are matrices of appropriate dimensions whose elements are periodic in t of 
period T = 21r/w and £-integrable in [O, T]. If if>, Pare even int and w, Qare 
odd int and 2ui ¢ 0, <TJ ± uk ¢ 0 (mod w) j ~ k,j, k = 1, 2, •• ·, n, then 
all solutions of (2.8) are bounded in ( - oo, + oo) for I EI sufficiently small. 

The interest in this theorem lies in the fact that there are m characteristic 
exponents equal to zero for E = 0 and, therefore, a simple reasoning of the type 
used in the previous pages is not applicable. 

3. Applications to stability of periodic solutions 

In this section we state two theorems which seem to be very important and 
at the same time very easy to apply. For more results and examples, see [11]. 

THEOREM 3.1. Consider the autonomous system 

(3.1) x" + Ax = Ej(x, x') 

where x, fare n vectors, E > 0, A = diag (ui, • • • , u!), uJ > 0, j = 1, 2, 
• • • , n, and f E C2• Suppose there is a periodic solution xo( E, t) = xo( E, t + 271'/ 
w), w = a-1 + O(E), of (3.1) of the form xo(0, t) = (a cos u1t, 0, • • • , O) where 
a is a real number. If 

(3.2) 2<Tj ¢ 0, 

and 

(3.3) 

<TJ ± uk ¢ 0 (mod 0-1), j ~ k, j, k = 2, 3, • • • , n. 

f ~ hx;' [ Xo ( 0, ~), X~ ( 0, :) ] dt < 0, j = 1, 2, • • • , n, 

then there exists an Eo > 0 such that this periodic solution xo( E, t) is asymptoti
cally orbitally stable in [O, oo), 0 < E :::; Eo . 

After having the results mentioned in Section 1, the proof of this theorem is 
quite simple because condition (3.2) implies that the characteristic multipliers 
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for E = 0 of the linear variational equation of xo( E, t) are all simple except for 
two which are equal to unity. Since (3.1) is autonomous, one of the multipliers 
is unity even for E r5-0. Consequently, the method of successive approximations 
essentially gives the remaining characteristic exponents directly and condition 
(3.3) assures that these exponents have negative real parts. 

The above result generalizes a result of A. Andronov and A. Witt ( [1]) ( see 
also N. Minorsky [16]), for the case where n = 2. They applied the Floquet 
theory directly and evaluated the corresponding 4 X 4 determinant, whereas 
the above proof is much easier and does not require the evaluation of any deter
minants even for arbitrary n. For arbitrary n, this result was also obtained by 
E. Thompson ([19]) in his thesis at Purdue University. 

THEOREM 3.2. Consider the periodic system 

(3.4) x" + Ax = Ej(x, x', t) 

where x, fare n-vectors, E > 0, A = diag (a-L • • • , u;), uJ > 0, j = 1, 2, • • ·, 
n,f E 02 withrespect to x, x' and continuous in t,f(x, x', t + T) = f(x, x', t)T = 
21r/w, w > 0. Suppose <T1 = (k/m)w, where k, m are integers, and m > O; 
and assume that there is a periodic solution xo(E, t) of (3.4) of period mT of 
the form xo(0, t) = (a cos (u1 t + cp), 0, • • ·, 0) where a, cp are real numbers. 
If 

(3.5) 2<Tj ~ 0, <Tj ± <Tk ~ _o mod (w/m), j r5-k, j, k, = 2, 3, • • • , n, 

then there exists an Eo > 0 such that this periodic solution is asymptotically 
stable in [0, oo), 0 < E ::::; Eo , provided that 

(3.6) fomT fix;' [xo (0, t), X~ (0, t), t] dt < 0, 

and A r5-B, A2 r5-B, B > 0, where 

J = 1, 2, • • ·, n, 

1mT 

A = 
0 

f1xi dt, 

2mTui B = cri A2 + (fomT fix 1 dty 

(3.7) [1
mT 1mT ]! 

- 0 f 1x1 COS 2u1 t dt - cr1 
0 

f1x1 sin 2cr1t dt 

[1
mT 1mT ]2 

- 0 f lx1 sin 2u1 t dt + cr1 0 f1xi cos 2u1 t dt ' 

and each of the functions are evaluated at xo(0, t), x~(O, t), t. 
Except for the condition A 2 r5-B this generalizes a result of L. Mandelstam 

and N. Papalexi ([12]) for the case n = 1. This result was also obtained for 
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n = I by H. R. Bailey and R. A. Gambill ( [2]) using the above method of suc
cessive approximations. Also, for arbitrary n and all of the conditions in (3.5) 
violated (i.e., all of the characteristic multipliers of the linear variational equa
tion equal for e = 0), H. R. Bailey and R. A. Gambill ( [2]) obtained explicitly a 
matrix of order 2n whose eigenvalues determine the stability properties of 
xo( e, t). These stability theorems could also probably be obtained from the re
cent results of I. I. Blehman ( [3]) and J. A. Nohel ( [18]). 

RIAS, BALTIMORE, MARYLAND 
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