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Introduction 

This report is based on the results of a joint paper by Jack K. Hale and Arnold 
Stokes entitled "Behavior of Solutions near Integral Manifolds", to be pub
lished in Archives for Rational Mechanics and Analysis. This paper will be 
referred to here as H. S. As this paper is extensive, with a number of theorems 
and applications, a detailed summary would probably be so lengthy and so de
tailed as to be unreadable. 

Thus, the authors felt that it would be more useful to discuss in general terms 
the type of problem considered in the paper and relate the results to those of 
other authors. As this problem leads to considering systems which split into 
sub-systems, each sub-system possessing different properties, we include in the 
last portion of the paper some observations on methods of discussing such sys
tems. Such equations have been referred to by Lefschetz ([3], p. 117) as "product 
space equations" and have been considered by Persidskii ([6]), Malkin ([5]), 
Dyhman ([2a]) and others. 

Throughout this article, all functions are assumed Lipschitzian, defined in 
suitable domains, etc. As the emphasis is on basic concepts, unnecessary detail 
has been suppressed throughout; it is hoped not to the point of obscurity. As 
notation, Rk is k-dimensional Euclidean space; if x E R\ then II x II is any norm 
in Rk; Ck is the class of continuous functions with continuous derivatives up 
through order k. 

Section 1 

Consider the equation 

(1) x = Ax+ J(t, x), x an n-vector, 

where f ( t, x) o( II x 11) as 11 x 11 - 0, uniformly in i, and A is a constant matrix, 
all of those eigen-values have negative real parts. Then the origin is asymptoti
cally stable, and solutions beginning near the origin tend to O exponentially. 
These results, while important, have long been known; see Lyapunov [4]. 

For many reasons, one would like to consider how the behavior of ( 1) is altered 
if the system is disturbed. In this case, there is the result, due to Malkin ( [5], 
p. 303), (see also Coddington and Levinson [I], Remark, p. 328) that in the equa
tion 

(2) x = Ax+ f(t, x) + g(t, x), 
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where A and f are as in ( 1), and II g ( t, x) II ::s; 7'/, for t ~ 0, II x II bounded, the 
origin is stable if 7'/ is sufficiently small. Here observe that the stability of the 
origin has been preserved, ( even though the origin may not be a solution of (2)), 
but the presence of g destroys the asymptotic stability. The function g has an 
obvious physical interpretation in this case. 

If, however, one requires that II g II ::s; 7'/, and g - 0 as t - oo, for II x II 

bounded, the origin in (2) is asymptotically stable, if 7'/ is small enough (see, 
e.g., Coddington and Levinson [1, p. 327]), although no longer do the solutions 
approach zero exponentially. 

In fact, if x(t) is a solution, x(t) - 0 as t - oo at very nearly the same rate 
as g does; for instance, if J~ II g(t) II dt < oo, J~ II x(t) II dt < oo, etc. (see 
H.S.) 

Note that if g - 0 for 11 x 11 small, as t - oo, one may assume II g II small for 
all t ~ 0, as does Malkin, or discuss the equation fort ~ T, where Tis such that 
II g(t, x) II ::s; 7'/ for t ~ T. This latter course was chosen by Coddington and 
Levinson, and the authors. 

Section 2 

In every equation considered in Section 1 all the components of a solution 
behaved similarly; that is, all components went to zero, or stayed small. But 
many circumstances arise wherein it is either not natural or not possible to 
require that all components have the same behavior. In (1), for instance, if 
some of the eigen-values had zero real parts, with the remaining real parts nega
tive, it would be natural to divide the system into two parts. Let us consider some 
examples in which one or more zero eigen-values occur in the linear term. 

In the equation 

(3) x = X(x), X an n-vector, X E c2, 

assume that there exists a periodic solution xo = xo(wt), where xo(27r + s) -
xo(s) for alls. Assume further that, in the variational equation 

(4) . - ax(xo(wt)) 
y - ax Y, 

( n - 1) of the characteristic exponents have negative real parts. Then, in the 
x-space, the limit cycle is asymptotically stable. However, more is true also. 

As (3) is autonomous, xo(wt + rp) is also a solution, for rp ER. Thus in the 
(x, t) space, xo(wt + rp) generates a cylinder Cast and rp vary. Then, under the 
same assumptions, this cylinder is not only asymptotically stable, that is, 
nearby solutions approach the cylinder (in this case exponentially), but also, 
if x(t) is a solution of (3) sufficiently near C, then there exists rp0 such that 
x(t) - xo(wt + rpo) - 0 as t - oo, that is, x approaches a particular periodic 
solution lying on the cylinder (see Coddington and Levinson [1], p. 323). 

Now it is possible to introduce local coordinates around the cylinder C (see, 
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e.g., Lefschetz [3], p. 149, or H. S.), and in these coordinates, (3) has the form: 

s = w + 4>(t, s, h), 
(5) 

h = Hh + H 1(t, s, h), 

where sis a scalar, his an (n - 1)-vector, the eigen-values of Hare the non
zero characteristic exponents of ( 4), and 4> and H 1 are second order in h uni
formly in t and s. The cylinder C is given by h = 0. 

Then, if x(t) is a solution of (3), x(t) _. C is equivalent to h(t) _. 0 as t---;. CJJ, 

s(t) defined for all t 2'.: 0; and x(t) - xo(wt + <po) _. 0 for some <po, is equivalent 
to h(t) _. 0, s(t) - (wt + <po) _. 0 as t _. CJJ. Clearly, it is natural to divide 
this system into two parts, and ask different questions about the two sub-sys
tems. 

As was done in Section 1, consider (3) in the presence of a disturbance, that 
is, the equation 

(6) x = X(x) + X*(t, x), 

where Xis given in (3), and II X*(t, x)II ~ 7/ for x in some bounded region 
containing xo. As may be anticipated from the discussion in Section I, and the 
form of equation ( 5), for 7/ sufficiently small, C is stable but not asymptotically 
stable. 

If X* _. 0 as t _. CJJ, then, as before in Section 1, C is now asymptotically 
stable, though not exponentially (see H.S.). And, if for x bounded, 

f' II X*(t, x)II dt < CJJ, 

and if x(t) is a solution to (6) sufficiently near C, then there exists a <po such that 
x(t) - xo(wt + <po) _. 0 as t _. CJJ (or, in local coordinates, h(t) _. 0, s(t) 
(wt+ <po)_. 0 as t---;. CJJ) (see H.S.). In this last case, ff II X*(t, x)II dt < CJJ 

implies ff 11 h(t) II dt < CJ;), as in Section 1. 

Section 3 

For another, more interesting example of a system which naturally splits into 
sub-systems, consider 

(7) x = X(x), X an n-vector, XE c2, 

and now assume that there exists a (k + 1)-parameter family of periodic solu
tions xo = xo(w(b)t + 'P, b), where <p ER, b = (bi, • • • , bk) E VCR\ Van 
open set, w(b) > 0 for b E V, and xo(s, b) = xo(s + 27r, b), for alls, and all 
b E V. We assume throughout this section that k 2'.: 1, for otherwise, the dis
cussion in Section 2 applies. 

Now assume that the linear variational equation 

(8) 
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has n - (k + 1) characteristic exponents with negative real parts for all b E V. 
It is reasonable to expect then that the family of functions {xo} is asymptotically 
stable in some sense. 

Let M be the manifold in (x, t)-space defined by the family of functions {xo} 
and let Cbo be the cylinder defined by the family xo with b = bo . Then M con
sists of the k-parameter family of cylinders Cbo , bo E V. Under the above as
sumptions, M is asymptotically stable (with an exponential approach), and, 
in addition, if x(t) is a solution of (7) sufficiently near M, then there exist 
b' E V, <po E R such that x(t) - xo(w(b')t +<po, b') - 0 as t - oo, (see H. S.). 

The method used for the proof of this result is to introduce local coordinates 
( s, a, h) in the neighborhood of M so that any particular solution on M is given 
bys = w(ao)t + <po, a = ao, h = 0, <po, ao constant. 

To be more precise, choose bo E V, let a = b + bo, and now introduce local 
coordinates* around xo for a E S, a bounded open sphere with center at the origin. 
In these coordinates, (7) has the form 

s = w(a) + <T?(t, s, a, h) 

(9) d = A(t, s, a, h) 

h = H(a)h + H 1 (t, s, a, h) 

where <pis a scalar, a is a k-vector, his an n-(k + 1) vector; 

II A(t, s, a, h)II :s; L II h II, 

for a E S, 11 h 11 small, and all t, s; <T? and H1 are second order in II h II uniformly 
int, s (a is bounded), and all the eigen-values of H(a) have negative real parts 
for a E S. 

The above stability result can now be stated in terms of the local coordinates 
in (9). If h(0), a(0), s(0) are given and II h(0) II is sufficiently small, then there 
exist ao, <po such that the solution of (9) through h(0), a(0), s(0) satisfies the 
property that h(t) - 0, a(t) - ao ands - w(ao)t + <po - 0, as t - oo. Further
more II a(0) - ao II - 0 as II h(0) II - 0. With s absent, and A, H, and H1 

analytic in a, h, this theorem appears in Malkin [5], Dyhman [2a]. 
This is an example where a variety of behaviors is expected of the different 

components of a solution. In fact, equation ( 9), and in particular the last two 
equations in (9), and similar equations, have been studied at length. Before 
discussing these equations further, let us consider the effect on (7) of introducing 
disturbances. So consider 

(10) x = X(x) + X*(t, x), 

with X as in (7), and now X* must not only be small, but X* - 0 as t - oo 

rather quickly; in fact, for x bounded, the authors require 

f" II X*(t, x)II dt < 00 • 

* These coordinates exist if the matrix [clxo(s, b)/as, axo(s, b)/ab] has rank k + 1 (see 
H. S.). 
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The reason for this is clear, if one recalls that the coordinates in (9) are valid 
only for a E S. Thus, if these coordinates are to be used, the a-component of a 
solution must be bounded. But clearly a will be bounded in general only if 

f" II h(t) II dt < OO, 

and from Section I, this requires the above conditions on X*. Again note that 
here, and in Section II, rather than require II X* II small fort ~ 0, since X*-------'> 0 
as t-------'> oo, the theorem can be stated for x bounded and t ~ T instead, where 
II X*(t, x)II is small fort~ T. 

Now if Jr II X*(t, x)II dt < oo, then (10), in local coordinates as in (9), 
behaves as follows: if (h(t), a(t), s(t)) is a solution of (10) sufficiently near M, 
that is, II h(0) II sufficiently small, then h(t) -------'> 0, a(t) -------'> ao E S, as t-------'> oo, and 
s(t) is defined fort~ 0. This result implies that the solution not only approaches 
M but also approaches one of the cylinders Cbo mentioned above. However, the 
solutions do not necessarily approach one of the functions xo on this cylinder. 
To obtain this stronger type of stability the authors require the stronger con
dition Jr J~ II X*( u, x) II du dt < oo, and then, in addition to the above, 
s(t) - (w(ao)t + <p1) -------'> 0 as t-------'> oo, for some <p1. 

The discussion above has been for the variable <p a scalar. In H. S., <p is a 
vector and the same type of results are valid. This case has many interesting 
applications; for example, one can consider perturbations of stable torii. For a 
discussion of this and numerous examples illustrating the theory, see H. S. 

Without making further assumptions on the form of the function A, in ( 9), 
it seems that no results are obtainable in the cases II X* II ::;; ri, or II X* II ::;; ri 
and X* -------'> 0 as t -------'> oo . 

One possibility not investigated by the authors is the behavior of (9) under 
the assumption that there exists a Liapunov function for the last equation of 
(9) which implies that h-------'> 0 as t-------'> oo, for sand a suitably restricted. If a is 
not present, as in Section 2, the existence of such a function trivially implies 
that the cylinder C is stable. However, to obtain the stronger results in Section 
2; or to consider (9) in Section 3, one needs Jr II h(t)II dt < co, where his a 
part of a solution of ( 5) or ( 9). No general conditions on a Liapunov function 
which imply that h behaves in this manner are known to the authors. 

Section 4 

Consider the system of equations 

(11) 
(a) fJ = Y(y, z, t) 

(b) z = Z(y, z, t), 

where y E R\ z E R', Y(0, 0, t) = Z(0, 0, t) = 0, and Y, Z are continuous and 
Lipschitzian in some neighborhood of the origin in Rq X R'. One now wishes 
to determine the behavior of (11) by examining separately (lla) and (llb). 

Persidskii proceeds as follows (see Lefschetz [3], p. 118). Let p(t) be a con-
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tinuous r-vector, and consider the equation 

(12) iJ = Y(y, p(t), t). 

According to Persidskii, y = 0 is quasi-stable (quasi-unstable) whenever the 
following condition is (is not) fulfilled: Given e > 0, and to ~ 0, there exists an 
71(e), 0 < 71(e) < e, such that if II p(to)II ~ 71, II p(t)II ~ e, t ~ to, then any 
solution y(t) of (12), with II y(to)II ~ 71 satisfies II y(t)II < e, t ~ to. System 
(lla) is said to be quasi-asymptotically stable if it is quasi-stable and whenever 
p is such that p(t) -. 0 as t -. oo, then the solution of (12) also approaches 
zero as t-. oo. By symmetry, the same notions are defined for (llb). Persidskii 
then states that if the origin is quasi-stable ( quasi-asymptotically stable) for 
both (lla) and (llb), then the solution y = 0, z = 0, of (11) is stable (asymp
totically stable) in the sense of Lyapunov. Also, if the origin is quasi-unstable 
for one of the two partial systems (lla) or (llb), then the solution y = 0, 
z = 0 of (11) is unstable. 

The theorem on instability is not correct. As a counter-example consider the 
equation 

(13) i,, = -h. 

This is a special case of (9) without the variable s, and so there exists a neigh
borhood U of (0,o) such that if (a(0), h(0)) EU, where (a(t), h(t)) is a solu
tion of (13), then h(t) _, 0, a(t) _, ao, as t _, 00 , and II a(0) - ao II may be 
made as small as desired. Therefore, the solution a = 0, h = 0 is stable. But the 
solution a = 0 of the equation li = a2h is quasi-unstable since every nonzero 
solution of li = a2 e with positive initial conditions approaches oo . in a finite 
time for every e > 0. 

This example points out how difficult it is to determine conditions for the 
instability of a system of equations by examining a partial system. For some 
results along this line, see the paper of M. R. Dyhman ([2]) (also S. Lefschetz 
[3], p. 134). 

The theorem that quasi-asymptotic stability of (lla), (llb) implies quasi
asymptotic stability of (11) is also not true. For consider the equations, i; = -x 
+ y, iJ = -y + x. Then x(t) + y(t) = x(0) + y(0) for every solution x(t), y(t), 
and, therefore, this system is not asymptotically stable; but each subsystem is 
quasi-asymptotically stable. 

An improvement on this method of approach to a system such as ( 11) can 
be obtained as follows: Introduce the function spaces E'1 and E', where En is 
the space of all continuous functions from [0, oo) into Rn. It will not be necessary 
to consider these as topological spaces, just as sets of functions. 

Define two sets 'Y = {y E Eq I II y(t)II < gi(t), for all t ~ 0} and 
Z = {z EE' I II z(t)II < g2(t), for all t ~ 0}, where g1, g2 E E1 are given 
functions that are positive for all t ~ 0. Let§, Z be similarly defined, with"<" 
replaced by "~ ". Then we have the following theorem. 
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THEOREM. Suppose 91 , 92 and 7/ are such that 7/ < 91 ( 0), 7/ < 92( 0), and 
further, in the equation 

(14) iJ = Y(y, p(t), t), 

if II y(0) 11 ::; 7/, and p E Z, then the solution y E 'l:f, and in 

(15) z = Z(q(t), z, t) 

if II z(0) II ::; 7/, and q E ')J, then the solution z E Z. Then if II y(0) II , II z(0) II ::; 7/, 

the solution (y, z) of (11) lies in 1f X Z. 
Proof. The argument, due to Perron, is the same as that given by Persidskii. 

If (y, z) EE 1f X Z, then there exists a first t1 such that either II y(t1 II = 91(t1), 
or II z(t1)II. = 92(t1). Note that t1 > 0 since 7/ < 91(0), 92(0). Suppose 

11 z(t1) 11 = 92(t1). 

Then let z* E Z be such that z*(t) = z(t) on [0, ti]. Let y* be the solution of 
(14) with y*(0) = y(0), p(t) = z*(t). Then y* E 1f c ')J, so if z is the solution 
of (15) with q(t) = y*(t), z(0) = z(0), then z E Z. But by the uniqueness of 
the solution of ( 11), z* = z on [0, t1] implies y* = y on [0, t1], which in turn 
implies z = z on [0, t1]. But 11 z(t1) II = II z(t1) II < 92(t1) gives a contradiction, 
so that (y, z) E '):f X Z. 

It is clear that this argument extends trivially to n systems of the form xi = 

Xi(x 1 , • • • , Xn, t), with n classes ~i, ~i defined, using n functions Ji, etc. 
Further, uniqueness is used only to clarify the argument, and could be dis
pensed with by a trivial restatement of the theorem. 

As is clear, this alternative approach involves no new concepts, but it does 
provide greater clarity, as the difficulty involved in the definition of quasi
asymptotic stability is avoided, and more importantly, greater flexibility is 
obtained. It is clear that if 91(t) = 92(t) = e, then Persidskii's theorem on 
quasi-stability implying stability is obtained. But in addition, if 91(t) = e, 

and 92(t) ---... 0 as t---... oo, at a suitable rate, then systems such as (13) can also 
be examined. 

In addition, sets of the type 1f or Z can be used in the investigation of such 
diverse questions as existence in the large, boundedness or uniform bounded
ness, and ultimate boundedness (in the sense of Yoshizawa [8]). For illustration 
of such applications to a single equation, see Stokes [7]. The above argument 
shows clearly that if the solutions of the entire system are unique, then the 
method can be applied to show the presence of any of the properties above for 
each partial system. 

For example, consider the results of the authors regarding the behavior of 
(9). In fact, for (9) as written, and e > 0 the sets S = {s E E 1 I II s(t) II < 9(t)}, 
where 9 E E1, 9 > 0, a = {a E Ek I II a(t) - ao) II < m(t)}, where m E E1, 
0 < m(t) < Ke, where K is a constant, and ao is the initial condition for a, and 
JC= {h E En-(Hll I II h(t)II < ee-ut where rr > 0 is related to the matrix 
H(ao), were used to provide some of the desired results. The conclusion that 
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the solution ( s, a, h) E S X a X JC then implies that s exists in the large, a is 
bounded, and h(t) --+ 0 as t--+ oo. Of course, this is under the restriction that 
II h(O) II ~ 'IJ < e, for a suitable 'IJ· 

To obtain the fact that limt.-->co a(t) = a' exists, one can use the fact that as a is 
a solution, for t2 > t1 > 0, 

A similar argument shows that s(t) - (w(a')t + s') --+ 0 as t--+ oo. 

In the paper of the authors, the matrix H(a) is replaced by H(a, s, t), and 
in one theorem the principal matrix solution of h = H(a, l(t), t)h is assumed 
to be properly behaved only for those Z such that i = w(a') for some a'. This 
requires a slightly more subtle argument as one now considers an equation of 
the form h = H(a', l(t), t)h + (H(a, s, t) - H(a', l(t), t) )h + H1(a, h, s, t). 
Then the second term is bounded by L' II h II • [II a - a' II + 11 s - l(t) Ii], and 
it is necessary to produce an argument to show that II s(t) - l(t) II is small, 
ifs is a solution, where as a further complicati0n, l(t) involves the limt➔co a(t), 
where a is a solution. 

But in some instances, the straightforward approach works quite easily. For 
other examples of systems with two or three sub-systems, to which this method 
applies directly, see Dyhman ([2b]). 

RIAS, BALTIMORE, MARYLAND 
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