
DYNAMIC PROGRAMMING AND CLASSICAL. ANALYSIS 

BY RICHARD BELLMAN 

1. Introduction 

Over the last ten years, research in the field of dynamic programming has 
assumed, many different forms. Sometimes, the emphasis has been upon ques­
tions of formulation in analytic terms and concepts ([1, 2]); sometimes upon 
the problems of existence and uniqueness of solutions of the functional equations 
derived from the underlying processes ([2], [3], [4]); occasionally upon the actual 
analytic structure of the solutions of these equations ([5], [6], [7], [8], [9]); some­
times upon the computational aspects ([10], [11]); and sometunes upon the 
applications to control processes ([2], [12], [13]), to trajectories of various types 
([13], [14]), to operations research ([15], [16], [17]), to mathematical economic.s 
([18], [19]). 

Inevitably, the. result of this quasi-ergodic behavior has been to ignore a 
number of significant problems, and to treat a number of others in cavalier 
fashion. In this exposition, we wish to focus attention upon a number of inter~ 
esting, difficult, and significant questions in analysis which arise naturally out 
of the functional equation technique of dynamic programming. Our aim is to 
show that this theory constitutes a natural extension of .classical investigations 
and that the corresponding problems are natural generalizations of problems 
of classical analysis. 

As always in studying new areas, there is the hope that light thrown in this 
virgin territory will be reflected back upon still hidden parts of the classical 
domain. 

We shall restrict our attention here to deterministic processes, reserving for 
other times any discussion of more complex and arcane processes arising from 
the study of stochastic and adaptive processes ([2]). These new areas of analysis 
where many different sub-disciplines such as algebra, topology, differential 
equations and probability theory merge and lose their separate identity in all­
embracing problems offer bountiful and boundless regions for research. The 
reader familiar with the concepts and problems discussed here can readily con­
struct for himself corresponding questions involving uncertainty. 

2. Multistage Decision Processes 

Dynamic programming is a mathematical theory of multistage decision 
processes. Expositions of this theory may be found in [1] and [2]. The problems 
posed below will be very much more meaningful within the context of dynamic 
programming. The reader who wishes, however, may ignore all questions of 
motivation and regard the problems that follow as conundrums pulled out of 
the blue. 
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3. The Calculus of Variations 

Perhaps the most interesting and important example of a multistage decision 
process of continuous type is the calculus of variations. Consider the scalar 
variational problem of maximizing the integral 

(1) J(y) = LT F(x, y) dt, 

over all functions y, where x and y are related by means of the differential equa­
tion 

(2) 

Introducing the function 

(3) 

dx 
dt = G(x, y), x(0) = c. 

f(c, T) = Max J(y), 
'V 

we obtain from the principle of optimality ( [1]), the nonlinear partial differ­
ential equation 

(4) of [ of] aT = M;i,x F(c, v) + G(c, v) ac , 

with the initial condition 

(5) f(c, 0) = 0. 

See [1], [2]. 
We shall use this equation as a pivot for some of the subsequent problems 

we shall present. 

4. Existence and Uniqueness 

The equation in (3.4) is derived in a formal fashion, much as the Euler equa­
tion is customarily obtained. The first problem we pose is that of finding condi­
tions upon the functions F(x, y) and G(x, y) which ensure the existence and 
uniqueness of a solution of the unconventional nonlinear partial differential 
equation of (3.4). 

One way to approach this problem is to employ the results of the classical 
calculus of variations. These enable us to establish the existence of a solution of 
the original variational problem, under certain rather rigid conditions upon 
F(x, y) and G(x, y). 

This is not a particularly satisfactory procedure for a number of reasons. In 
the first place, we would like to use Equation (3.4) to resolve the original varia­
tional problem. Secondly, we want to use analogues of (3.4) to study variational 
problems which partially or wholly escape the classical theory. This will be the 
substance of the following section. 
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5. Constraints 

A question of much analytic interest, and one which in any case is rudely 
thrust upon us by a great number of feedback control and trajectory processes, 
is that of solving the variational problem of (3.1) and (3.2) under the additional 
constraint 

(1) 0 ~ t ~ T. 

It is certainly surprising that a simple condition of this nature should so effec­
tively stymie the usual approach, but, nonetheless, true. For a detailed discus­
sion, see [2], [20]. 

As a result of the presence of the foregoing restriction, the equation of (3.4) 
is replaced by the equation 

(2) of [ of] -:-T = Max F(c, v) + G(c, v) ~ . 
V l•l~k vc 

One might surmise that the presence of the constraint would simplify the in­
vestigation of existence and uniqueness of solution, as it certainly does the com­
putational solution of equations of this nature. However, equations of the fore­
going type have not been rigorously investigated as yet. 

6. Discrete Version-I 

A standard route to the goal of existence of a solution of a functional equation 
involving derivatives is by way of difference equations. This approach is of the 
utmost importance in connection with the numerical solution of these equations. 

Let us then in place of (3.4) write the recurrence relation 

f(c, T + A) - f(c, T - A) 
2A 

(1) 

= M.ax [F(c, v) + G(c, v) e(c + o, T) 2; f(c - 0, T)], 

where c and T assume respectively values of the form ±ko, lA. As A-+ 0, o---+ 0, 
this relation formally approaches that of (3.4). 

The problem now is that of determining the connection between the solution 
of (1) and the possible solution of (3.4), first under the assumption that (3.4) 
has a solution and secondly in the hope of using the solution of ( 1) to establish 
the existence of a solution of (3.4). 

Closely associated with questions of this nature is the question of numerical 
stability of a computational algorithm such as (1). Finally, let us note that 
this is only one of a large set of possible discrete approximations to (3.4). 

7. Discrete Version-II 

To obtain a discrete version of a different type, we use an idea of some im­
portance as far as approximation techniques are concerned. In place of approxi-
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mating to the exact equation describing the process, we can employ the exact 
equation for an approximating process. 

Hence, in place of the continuous decision process described by the equations 
of (4.1) and (4.2), let us consider the problem of determining the sequence 
{ Yk} which minimizes the function 

n-1 

(1) J N(y) = L F(xk, Yk)li, 
k=O 

where Xk and Yk are related by means of the equation 

(2) Xo = c, k = 0, l, 2, • • • . 

Here Xk = x(k!i), Yk = y(k!i), and Nii = T. 
Setting 

(3) 

we obtain the recurrence relation 

(4) 

with 

(5) 

fN(c) = Max [F(c, v)!i + fN-1(c + G(c, v)!i)], 
V 

fo(c) = Max F(c, v)li. 
V 

Recurrence relations of this nature have been quite successful in the obtain­
ing of computational solutions; see [10, 14, 21]. 

Observe that as Ii - 0, the equation in (4) formally reduces to that of (3.4). 
Yet, unlike ( 6.1), it involves only one small quantity Ii, and no ratio of small 
quantities such as li/o. This is a most important point in connection with nu­
merical stability. 

A small amount of work has been done on the subject of the convergence of 
the solution of ( 4) to the solution of (3.4); see [22], [1], [23], [24]. Much remains 
to be done. 

8. An Application 

We have mentioned above the possibility of applying ideas and techniques 
developed in the new field of multistage decision processes to classical equations. 
Let us give an example of this. 

Consider the partial differential equation 

(1) Ut = UU,,, u(x, O) = g(x), 

an equation which possesses a shock discontinuity. In place of the usual finite 
difference scheme, a la (6.1), let us borrow the approach of (7.4) and use the 
relation 

(2) u(x, t + Ii) = u(u + u(x, t)li, t), 

as an approximation to ( 1). 
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Excellent results have been obtained, even in the immediate neighborhood of 
the shock, using this algorithm; see [25]. No work has been done, however, on 
the question of the convergence of the solution of (2) to the solution of (1) as 
~-+ 0, for this equation or for more general equations. For another application 
of this idea, see [26]. 

9. Approximation in Policy Space 

Another attack on the basic problem of establishing existence and uniqueness 
of solutions of the equation in (4.7) or (6.2) is by means of the method of suc­
cessive approximations. In place of the usual approach, let us invoke the tech­
nique of approximation in policy space; see [1], [2]. 

We begin by guessing an initial policy, Vo = v0(c, T), and using this policy to 
determine a return function Jo= Jo(c, T), by means of the linear partial differ­
ential equation 

(1) ofo ( ) ( ) ofo 
oT = F c, Vo + G c, Vo oc ' Jo(c, O) = 0. 

Having determined Jo( c, T), let us determine the function V1 by the condition 
that it maximize the function 

(2) F(c, v) + G(c, v) ~:o. 

Using this new policy-function, let us determine the new return function Ji by 
way of the linear partial differential equation 

(3) fi(c, 0) = 0. 

Continuing in this fashion, we obtain a sequence of functions {jk} and { vk}. In 
view of the manner in which V1 is determined, it is clear that 

ofo ( ) ( ) ofo 
oT = F c, Vo + G c, Vo Oc ' 

(4) 

::; F(c, v1) + G(c, v1) ~:o. 

From this, we would expect to find thatfo(c, T) ::; j 1(c, T) for T ~ 0, and this 
is actually the case. Generally, the merit of this approximation method is that 
it yields monotonic behavior, • 

(5) 

The important problem is to determine conditions under which this sequence 
converges to a solution of (3.4), and, of course, to investigate the application 
of this technique to more general equations. Some preliminary results for a 
much simpler problem may be found in [1], Chapter 11. 
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10. Positive Operators 

A crucial result in the foregoing procedure is the conclusion !1 2 Jo for T 2 0 
as a consequence of the equality 

(1) 

and the inequality 

(2) ofo ( ) a' ( ) of 0 oT ::;; F c, v1 + c, v1 oc , 

granted common initial conditions at T = 0. 
Questions of this nature are part of the theory of positive operators. Given a 

relation Au 2 0, where A is an operator, we wish to determine when this implies 
u 2 0. This type of investigation was initiated by Caplygin ([27]); see [28], 
[29], [30] for further results and references. Again much remains to be done in 
this field. 

11. Quasilinearization 

Let us now indicate another application of new techniques developed in the 
theory of dynamic programming to classical analysis. We have just seen, in §9, 
that equations of the special form of (3.4) can be approached along a route 
which. is not open to the equations of classical analysis. In view of the mono­
tonicity of approximation, a very valuable analytic and computational aid, it 
may be worth devoting some effort to the question of converting an equation 
of conventional type into one of the form of (3.4). 

What we are doing is transforming an equation arising from a descriptive 
process into one which arises from a variational process. This, of course, is a 
familiar idea in analysis and one of great power and versatility. The way in 
which we do it is, however, new. 

To give a simple example of the technique which can be used, consider the 
Riccati equation 

u' = u2 + a(t), u(O) = c. (1) 

Write 

(2) u2 = Max (2uv - v2 ), 
V 

so that (1) assumes the form 

(3) u' = Max [2uv - v2 + a(t)], u(0) = c. 
V 

Consider the related linear equation 

(4) U' = 2Uv - v2 + a(t), U(O) = c, 

whose solution we write in the form 

(5) U = T(v, t). 
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We suspect that 

(6) u = Max U = Max T(v, t), 
V V 
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a fact which is a consequence of the positivity of the operator d/dt - 2v, in the 
sense of §10. Since we can obtain an explicit representation for T(v, t) in terms 
of integral equations, ( 6) furnishes an interesting representation for the solution 
of ( 1). 

Generally, if f( u, t) is convex as a function of u for O :s; t :s; to, we can write 

(7) f(u, t) = Max [J(v, t) + (u - v)f.(v, t)], 
V 

and if f ( u, t) is concave, we can write 

(8) f(u, t) = Min [J(v, t) + (u ~ v)f.(v, t)] . . 
These representations enable us to treat differential equations of the form 

(9) u' = f(u, t), 

and, more generally, to transform functional equations of the form 

(10) Au= f(u, t), 

where A is an operator, into quasilinear equations of the form 

(11) Au= Max [f(v, t) + (u - v)f.(v, t)] . . 
Having obtained this form, we can employ approximation in policy space, 

and proceed as above. This representation also has important computational 
advantages. For a more detailed discussion, with many examples, see [28], [29]. 

12. Semi-Group Theory 

The modern theory of semi-groups of transformations ([31]), deals with func­
tional equations of the form 

(1) OU 
?it- Au, 

where A is a linear operator. A particular equation of this type is the linear 
partial differential equation of (9.1). The functional equations associated with 
dynamic programming processes of continuous type have the form 

(2) OU 
:;;- = Max [A(v) u + b(v)]. 
ut v 

In view of the fact that (2) contains (1), we can expect a diffusion of knowl­
edge in both directions. In the first place, in view of the quasilinearity of (2), 
we may expect that a large part of semi-group theory can be applied to the 
question of the existence of solutions of ( 2). In this way we would hope to 
obtain far stronger results in the calculus of variations than those currently 
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available. In particular, we would aspire to a more complete theory for varia­
tional problems with constraints. 

Secondly, we may expect to utilize the results of the linear theory, and some 
of the results and techniques of dynamic programming, to obtain a theory of 
nonlinear equations which can be written in the form of ( 2). 

13. Multidimensional Variational Problems 

Consider the problem of maximizing the integral 

(1) 

where the integration is over the interior of a two-dimensional region R, and 
the value of u is prescribed on the boundary B of R, 

(2) u = g(P), PE B. 

In a procedure completely analogous to the one-dimensional case, we may in­
troduce the functional 

(3) f(g(P); R) = Max J(u). 
u 

Considering a sequence of shrinking regions, it is not difficult to obtain a 
functional equation for f(g(P); R). The derivatives that occur will now be 
functional derivatives; cf. [32], [33]. 

Although this technique has been used to obtain the Hadamard variational 
formula for the Green's function of a region, and other results ([33], [34], [35], 
[36]), no work has been done on the existence and uniqueness of solutions of 
equations of this nature. 

An interesting side problem associated with variational questions of this 
nature is that of determining the functional form of f(g(P); R). Even for the 
classical problem involving the Dirichlet functional, 

(4) J(u) = l (u; + u;) dA, 

deep and subtle analysis is required; see Osborn ( [37]), where further references 
may be found. 

14. Stability and Asymptotic Behavior 

As soon as the fundamental questions of existence and uniqueness of solution 
have been disposed of, we can turn to the deeper and more interesting problems 
of the analytic structure of the solution. In particular, we would like to examine 
the stability properties of the solution and its asymptotic behavior as t ---+ oo. 

A small amount of work has been done in this direction, but no systematic 
theory has been constructed; see [17, 38, 39]. 

A theory of this nature can be based upon an extension of the present theory 
of positive operators; see [40, 41, 42]. 
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15. Implicit Variational Problems 

So far we have considered variational processes of fixed duration. It is of in­
terest to consider processes in which the upper limit T depends upon the policy 
used, and those of still more general nature. These are examples of implicit 
variational problems. 

One of the most important examples of this type of problem is furnished by 
"bang-bang" control. Suppose that we have a system S ruled by a vector dif­
ferential equation 

(1) dx 
dt = g(x, y), x(O) = c, 

where the components of y are subject to the restrictions 

(2) 
(a) I Yi(t)I :::; ki, i = 1, 2, • • • , N, or 

(b) y,(t) = ±k,, i = 1,2, ••• ,N. 

We wish to choose y in such a way as to minimize the time required to force 
the system from the initial state c to another state, say 0. 

For the linear case, 

(3) dx 
- =Ax+ y 
dt ' 

x(O) = c, 

a great deal has been done using a variety of techniques; see [43], [44], [45] for 
further references. 

16. Further Directions 

It is easy to pose a number of additional questions of interest if we admit 
two person processes, multistage games (cf. [4], [46]); and if we introduce sto­
chastic and adaptive processes in general ([1], [2], [39], [47]). 

The range of investigation is now so broad, and so different in many ways 
from the classical tableau, that we feel it better to present discussions of this 
nature in separate publications. 

BIBLIOGRAPHY 

[1] R. BELLMAN, Dynamic Programming, Princeton Univ. Press, Princeton, N. J., 1957. 
[2] R. BELLMAN, Adaptive Control Processes, A Guided Tour, Princeton University Press, 

1960. 
[3] R. BELLMAN, Some functional equations in the theory of dynamic programming-I: 

functions of points and point transformation, Trans. Amer. Math. Soc., vol. 80 
(1955), pp. 51-71. 

[4] R. BELLMAN, Functional equations in the theory of dynamic programming-Ill, Rend. 
Cir. Mate. Palermo, ser. 2, tomo 5 (1956), pp. 1-23. 

[5] R. BELLMAN, A variational problem with constraints in dynamic programming, J. Soc. 
Ind. Appl. Math., vol. 4 (1956), pp. 48-61. 

[6] R. BELLMAN, On a class of variational problems, Q. Appl. Math., vol. 14 (1957), pp. 353-
359. 

[7] R. BELLMAN, Functional equations in the theory of dynamic programming-V: positivity 
and quasi-linearity, Proc. Nat. Acad. Sci. USA, vol. 41 (1955), pp. 743-746. 



88 RICHARD BELLMAN 

[8] R. BELLMAN, I. GLICKSBERG, AND 0. GRoss, On the optimal inventory equation, Manage­
ment Sci., vol. 2 (1955), pp. 83-104. 

[9] R. BELLMAN, On some applications of dynamic programming to matrix theory, Illinois 
J. Math., vol. 1 (1957), pp. 297-301. 

[10] R. BELLMAN AND S. DREYFUS, Computational Aspects of Dynamic Programming, 
Princeton Univ. Press, Princeton, N. J., to appear. 

[11] R. BELLMAN ANDS. DREYFUS, A bottleneck situation involving interdependent industries, 
Na val Research Log. Q., vol. 5 (1958), pp. 21-28. 

[12] R. BELLMAN, S. DREYFUS, AND R. KALABA, Dynamic programming trajectories and 
space travel, Proc. Fourth Symp. on Astronautics, Los Angeles, 1959, to appear. 

[13] R. BELLMAN ANDS. DREYFUS, An application of dynamic programming to the determina­
tion of optimal satellite trajectories, J. Brit. Interplanetary Soc., vol. 17, 1959-
1960, pp. 78-83. 

[14] T. CARTAINO AND S. DREYFUS, Application of dynamic programming to the airplane 
minimum time-to-climb problem, Aero. Eng. Rev. (1957). 

[15] S. DREYFUS, A note on an industrial replacement process, Operational Research Q. 
(December, 1957). 

[16] R. BELLMAN, Equipment replacement policy, J. Soc. Indust. Appl. Math., vol. 3 (1955), 
pp. 133-136. 

[17] R. How ARD, Discrete Dynamic Programming Processes, Thesis, Massachusetts Institute 
of Technology, 1958. 

[18] R. BECKWITH, Analytic and Computational Aspects of Dynamic Programming Processes 
of High Dimension, Ph.D. Thesis, Purdue University, 1959. 

[19] R. BELLMAN, I. GLICKSBERG, AND 0. GRoss, On the optimal inventory equation, Manage­
ment Science, vol. 2 (1955), pp. 83-104. 

[20] R. BELLMAN, Dynamic programming and its application to the variational problems in 
mathematical economics, Proc. Symp. in Calculus of Variations and Applications, 
Amer. Math. Soc., Chicago, April, 1956, pp. 115-138; published by McGraw-Hill 
Book Co., Inc., New York. 

[21] R. BELLMAN AND S. DREYFUS, On the computational solution of dynamic programming 
processes-I: on a tactical air warfare model of Mengel, J. Oper. Res., vol. 6 (1958), 
pp. 65-78. 

[22] R. BELLMAN, Functional equations in the theory of dynamic programming-VI: a direct 
convergence proof, Ann. of Math., vol. 65 (1957), pp. 215-223. 

[23] H. OsBORN, The problem of continuous programs, Pacific J. Math., vol. 6 (1956), pp. 
721-731. 

[24] W. FLEMING, Discrete Approximations to Some Continuous Dynamic Programming 
Processes, The RAND Corporation, Research Memorandum RM-1501, June 2, 
1955. 

[25] R. BELLMAN, I. CHERRY, AND G. M. WING, A note on the numerical integration of a class 
of nonlinear hyperbolic equations, Q. Appl. Math., vol. 16 (1958), pp. 181-183. 

[26] R. BELLMAN, On the nonnegativity of solutions of the heat equation, Bull. Unione Mate­
matico, vol. 12 (1957), pp. 520-523. 

[27) S. CAPLYGIN, A New Method for the Approximate Integration of Solution of Differ­
ential Equations, Moscow-Leningrad, 1950. 

[28) R. BELLMAN, Functional equations in the theory of dynamic programming- V: positivity 
and quasi-linearity, Proc. Nat. Acad. Sci. USA, vol.41 (1955), pp. 743-746. 

[29] R. KALABA, On nonlinear differential equations, the maximum operation and monotone 
convergence, J. Math. and Mech., vol. 8 (1959), pp. 519-574. 

[30] E. F. BECKENBACH AND R. BELLMAN, Inequalities, vol. 1, Ergebnisse der Math., to 
appear. 

[31] E. HILLE AND R. PHILLIPS, Functional analysis and semigroups, Amer. Math. Soc. 
Colloq. Pub!., vol. 31, 1958. 



DYNAMIC PROGRAMMING AND CLASSICAL ANALYSIS 89 

l32] R. BELLMAN, Dynamic programming and a new formalism in the theory of integral equa­
tions, Proc. Nat. Acad. Sci. USA, vol. 41 (1955), pp. 31-34. 

[33] R. BELLMAN AND H. OSBORN, Dynamic programming and the variation of Green's func­
tions, J. Math. and Mech., vol. 7 (1958), pp. 81-86. 

[34] R. BELLMAN, Functional equations in the theory of dynamic programming-VIII: the 
variation of Green's functions for the one-dimensional case, Proc. Nat. Acad. Sci. 
USA, vol. 43 (1957), pp. 839-841. 

[35] R. BELLMAN AND S. LEHMAN, Functional equations in the theory of dynamic program­
ming-IX: variational analysis, analytic continuation, and imbedding of operators, 
Proc. Nat. Acad. Sci. USA, vol. 44 (1958), pp. 905-907. 

l36] R. BELLMAN AND S. LEHMAN, Functional equations in the theory of dynamic program­
ming-X: resolvcnts, characteristic functions and values, Duke Math. J., vol 27, 
1960, pp. 55-70. 

[37] H. OSBORN, The Dirichlet functional, J. Math. Analysis and Appl., vol. 1, 1960, pp. 61-
112. 

[38] R. BELLMAN, A Markovian decision process, J. Math. and Mech., vol. 6 (1957), pp. 
679-684. 

[39] R. BELLMAN, Directions of Mathematical research in nonlinear circuit theory, PGCT 
Trans., to appear. 

[40] M. KREIN AND M. A. RUTMAN, Linear Operators Leaving Invariant a Cone in Banach 
Space, Amer. Math. Soc. Translation No. 26, 1950. 

[41] T. E. HARRIS, Branching Processes, Ergebnisse der Math., to appear. 
[42] R. BELLMAN, Introduction to Matrix Analysis, McGraw-Hill Book Co., Inc., New 

York, 1959. 
[43] R. BELLMAN, I. GLICKSBERG, AND 0. GRoss, On the "bang-bang" control problem, Q. 

Appl. Math., vol. 14 (1956), pp. 11-18 .. 
[44] J. P. LASALLE, On time optimal control systems, Proc. Nat. Acad. Sci. USA, vol. 45 

(1959), pp. 573-577. 
[45] R. BELLMAN AND J.M. RICHARDSON, On the application of dynamic programming to a 

class of implicit variational problems, Q. Appl. Math., vol. 17, 1959, pp. 231-236. 
[46] Studies in Game Theory-I, II, III, Annals of Math. Studies, Princeton University 

Press, Princeton, N. J. 
[47] R. BELLMAN AND R. KALABA, A Mathematical theory of adaptive control processes, Proc. 

Nat. Acad. Sci. USA, vol. 45, 1959, pp. 1288-1290. 




