
SOME ASPECTS OF ADAPTIVE CONTROL PROCESSES 

BY ROBERT KALABA 

1. Introduction 

In various types of control processes arising in such diverse fields as engineer­
ing of automata, economics, biology, and communication, control devices are 
called upon to function under various conditions of uncertainty regarding under­
lying physical processes and environmental conditions. These conditions may 
range from rather detailed knowledge, on the one hand, to complete ignorance 
on the other. As the process unfolds, however, with control decisions being made 
all the while in an effort to obtain optimal system performance, additional in­
formation may become available to the control device concerning the unknown 
aspects of the process. 

Under these circumstances the controller-animate or inanimate-has the 
possibility of "learning" to improve its performance based upon experience; i.e., 
it may adapt itself to circumstances as it finds them. 

The functional equation technique of dynamic programming ([2]) can be used 
to attack wide classes of problems involving the determination of optimal con­
trol policies for adaptive controllers ([14], [8], [9], [11]). The closely allied prob­
lems of formulating adaptive control problems in precise mathematical terms 
and of presenting feasible computational algorithms for determining solutions 
via high speed digital computation are to be discussed. A unique blend of the 
theories of differential equations and difference equations, of probability, and of 
the calculus of variations results. 

In recent years, to be sure, the mathematical theory of automatic control 
processes has been developed extensively ([26]). (An early contribution is Max­
well's paper, [21].) Many problems concerning stability and optimization have 
been formulated and successfully resolved ([25]). Furthermore, learning proc­
esses have been studied from the statistical side ([15], [18], [24]). Nevertheless, 
many challenges still remain ([29], [22], [25]) ; only a modest start has been made 
to date. 

A concrete example in the form of a system governed by the inhomogeneous 
Van der Pol equation with a random forcing term is discussed in later sections. 
First it is assumed that the statistical properties of a random forcing term are 
only partially known to the controller, which seeks to maintain the system near 
its unstable equilibrium state during the control period through a suitable 
choice of the system parameter as a function of time. Through observation of 
the random forces the controller learns to improve the quality of its performance 
([11]). 

In the second example the controller is not given precise knowledge of the ob­
jective of the control process, but infers this during the course of the process. This 
is, to be sure, a situation of common occurrence in economic, engineering and 
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other control processes. Even giving a precise mathematical formulation offers a 
distinct challenge. 

Lastly, some outstanding problems in the general field of adaptive control are 
sketched. 

2. Generalities Concerning Automatic Control Processes 

One of the most important applications of differential equations lies in the 
description of the development of physical processes. One frequently assumes 
that the rate of change of the state vector, x, of a given system is solely a func­
tion, f(x), of the state x and that initially the system is in a state c. This leads 
to the investigation of the system of equations. 

(1) 
dx . 
dt = x = f(x), x(O) = c, 0:::; t:::; T. 

In many situations, though, the behavior of the system in its native form 
described by the equation ( 1) may be adjudged unsatisfactory, so that exertion 
of control forces may be required in an effort to secure more satisfactory per­
formance. The equations for the process may then become 

(2) x = f(x, y), x(O) = c 

where y = y(t) is a control vector, usually subject to various constraints. A 
typical control problem might then consist in the determination of a control 
vector y = y(t), 0:::; t:::; T, which minimizes some functional F of x and y, e.g., 

(3) F(x, y) = [' G(x'. y, t) dt + H(x(T)). 

The temptation now is to view this as a problem in the calculus of variations 
and terminate matters there.* For a number of reasons, though, we do not 
choose to do this. In the first place, the constraints on y can be a source of com­
plication. In the second place, the resolution of the Euler equations subject to 
two-point boundary conditions is troublesome, especially if f(x, y) is not a linear 
function. Thirdly, there are no classical counterparts to the stochastic control 
processes we wish to consider below. Lastly, the determination of y as a function 
oft is not what is desired for purposes of feedback control: we do desire to know 
the appropriate control force to be exerted as a function of the current state of 
the system and the time remaining before the termination of the process. 

3. An Adaptive Control Process 

For purposes of concreteness, let us consider a system whose behavior is de­
scribed by the well-known Van der Pol equation 

* See, for example, Chapters 11 and 12 of 0. Bolza, Vorlesungen uber Variationsrech­
nung, Teubner, Leipzig, 1909. 
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u + <'-(u2 - l)u + u = o, 
u(0) = c1, u(0) = c2 . 

0 ::; t :s; T, 

As is known ( [20]), the origin in the phase plane is an unstable equilibrium 
point, and there exists a periodic solution toward which all trajectories in the 
phase plane tend ( assuming ci + c: ~ 0). Let us suppose that these oscillations 
are undesirable and that the system parameter <'-is a variable which may be 
selected by a controller during the course of the control process, subject to the 
restrictions 

(2) Lr (<'-(t) - a1)2 dt =:; c, 

in an effort to maintain the system near the equilibrium state. Furthermore, let 
us agree to measure the cost incurred during the control process by the func­
tional J[f.( t)], where 

T 

(3) J[E(t)] = 1 (I u(s) I + I v(s) I) ds + exp (I u(T) I_+ I v(T) I), 

u(s) = v(s). 

This monstrous criterion is chosen to stymie any attempt at direct analysis. The 
first term measures the cost of deviation from equilibrium during the interval 
(0, T), and the second measures the cost of terminal deviation. We wish to 
determine control policies which minimize the cost, subject to the restrictions in 
the inequalities (2). 

To handle this problem (and to prepare for the introduction of adaptive con­
trol processes and the use of digital computers), let us first reformulate it in 
terms of a discrete-valued time variable. Assume that the interval (0, T) is 
divided into N equal subintervals of length h so that 

(4) Nh = T. 

The equations ( 1) are replaced by the system of first-order difference equations 

(5) 

with 

(6) 

'Uk+! = Uk + Vkh 

k = 0, 1, 2, • • • , N - 1, 

Uo=C1, 

It is, as usual, understood that 

(7) u(kh) = uk, v(kh) = vk, k = 0, 1, 2, • • • , N. 

The restraints on <'-(t) become 

a =:; <'-k =:; b, k = 0, 1, 2, • • • , N - 1, 
N-1 

(8) L (ek - a1/h =:; c, 
k-O 
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and it is desired to minimize the function 
N-1 

(9) .l(fo, f1, • • ·, fN-1) = L (I uk \ + \ Vk \)h +exp(\ uN I+ I VN [) 

k-0 
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through appropriate choice of the variables £0 , f 1 , • • • , fN-l . The dependence 
of J on { fkl is through the equations in ( 5). 

In more realistic situations we are forced to recognize that the behavior of the 
system may be materially influenced by a variety of external influences, so that 
equations ( 5) may be replaced by the equations 

'Uk+! = Uk + Vkh 
(10) 

k = 0, 1, 2, • • • , N - 1. 

In the deterministic case {gk} will be known to the controller as a function of k. 
In the more complex stochastic case the variables {gkl will be random variables 
with known distribution functions. Finally, in the adaptive case, the forces gk 
will be random variables with distribution functions which are initially unknown, 
but which become more and more precisely determined as the process unfolds. 

Let us pass directly to a discussion of the adaptive control process, [3). An es­
sential feature of the discussion is that the state of the system at any particular 
time involves not only a description of the physical state ( displacement and 
velocity), but also a description of the state of the controller's knowledge con­
cerning the external influences, the information pattern. In addition, it is clear 
that provision has to be made for characterizing the transformations on this 
state of knowledge in the course of the process as facts concerning the partially 
unknown external influences are accumulated and assimilated. 

In its fullest aspects, we are here concerned with constructing a mathematical 
theory for, one of the fundamental conundrums of experimental and theoretical 
science: construction of a physico-mathematical theory, discovery of additional 
physical facts, modification of the theory, etc. For a general discussion, see [8], 
[12]. In this generality it seems unlikely that we shall ever possess a thoroughly 
satisfactory theory of such processes; certainly in the foreseeable future they 
will provide a challenging series of problems to the mathematician. We shall 
show how a start can be made in their treatment. 

We shall limit ourselves to a consideration of the problem in which the external 
influence gk is a random variable for which 

Prob {gk = 1} = p 
( 11) 

Prob {gk = -ll = 1 - p, k = 0, 1, 2, • • • , N - 1, 

where the precise value of the parameter pis unknown to the controller. We shall 
assume that these disturbances are independent random variables. It is to be ex­
pected, though, that in the course of the process the controller will be able to 
form increasingly reliable estimates of the parameter p, through observation 
and use of an estimator Pm ,n given by 
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(12) (r +m) 
Pm'" = ..,...(r_+_m....,.)-+-----,(-s -+-n--,-) ' 

where 

m = observed number of positive forces 
(13) n = observed number of negative forces 

r, s = two nonnegative parameters which determine the initial estimate 
of p and its trustworthiness. 

See [4), [12], and [11] for further discussion of this Bayes approach. 
It is true, of course, that use of an estimator involves loss of information 

about the observed sequence {gk} (runs, etc.); there is, however, a great simpli­
fication in the description of what constitutes the controller's state of informa­
tion, and in how this is transformed from time to time in the course of the 
process. In more general problems it is not so simple to describe the controller's 
state of knowledge and how it changes in the light of new information. The great 
task is to find reasonably simple descriptions of the information pattern, involv­
ing few parameters, which at the same time make it possible for the controller 
to make nearly optimal control decisions. Clearly, sufficient statistics will play a 
significant role, ( [23], [16]). 

Lastly, let us make the assumption that the controller is to regard all estimates 
as true values until further information is obtained. We can now proceed to the 
analytical formulation and computational solution .. 

4. Functional Equations 

Let us motivate our procedure by reiterating that we do not wish to deter­
mine an optimal value of e in terms of k and a given initial state; rather, we wish 
to determine a best value of e in terms of the current state of the system ( original 
system plus controller) and the time. This is the essence of the notion of feed­
back control, [9]. For deterministic processes this is a matter of convenience; for 
stochastic and adaptive processes it is essential. 

With this end in mind we embed the original control process within a class of 
processes beginning at times k = 0, 1, 2, • • • , N - 1, with the system in an ar­
bitrary state and express the relationships among the members of this class. The 
state is a five-dimensional vector (c1 , c2 , c, m, n), where 

(1) 

c1 = displacement 
c2 = velocity 
c = constraint constant of equation (3.8) 

m = observed number of positive random forces 
n = observed number of negative random forces. 

If the system is in the above state and the decision to have e = z is made, then 
an immediate cost of ( I c1 I + I c2 I) h is incurred, and, depending on the sign of 
the random force g, one of two possible system states S+ or S_, results at time 
h later, where 
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(2) S+ = (c1 + c2h, c2 - [z(ci - l)c2]h + h, c - (z - ai)2h, m + 1, n) 

and 

(3) s_ = (c1 + c2h, c2 - [z(ci - l)c2]h - h, c - (z - a1)2h, m, n + 1), 
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the first with estimated probability Pm,n , the second with estimated probability 
1 - Pm,n. With the system in the new state at the later time, a new choice of E 

has to be made-a decision problem of the same type as the previous one. 

Let us now introduce the functions 

(4) 

fk(c1, c2, c, m, n) = the estimated expected cost during the last k stages 
of the control process in which the system is in 
state (c1, c2, c, m, n) at time (N - k)h, and using 
an optimal control policy, k = 1, 2, • • • , N - 1. 

In taking expected values we assume that current estimates of statistical param­
eters are to be used as true values in the absence of additional information, whic;h 
accounts for our use of the phrase "estimated expected cost." We shall deter­
mine these functions recursively, beginning with .f1 , making use of the Bellman 
principle of optimality, ( [2]). At the same time we shall determine the desired 
optimal control decisions. For j 1 we have 

.f1(c1, C2, c, m, n) = (! C1 I + I C2 l)h + Min (Pm,n exp [I C1 + c2h II 
• + I c2 - [z(ci - l)c2 + c1]h + h ll 

+ ( 1 - Pm,n) exp { I C1 + C2h I + I C2 

(5) 

- [z(ci - l)c2 + c1]h - h Ill, 
where the minimization is over z-values satisfying the conditions 

(6) 

For the process originating at time (N - k)h we have 

fk(c1, c2, c, m, n) 
(7) 

= (I C1 I + I C2 J)h + Min {pm,nfk-l(S+) + (1 - Pm,n)JH(S-)1, . 
fork = 1, 2, • • • , N, where S+ and S_ are as in equations (2) and (3) and z 
is restrained by the inequalities ( 6). Solution is to be effected by carrying out the 
indicated minimizations, first calculating the function j 1 , then j 2 , and so on. 

The values of z as functions of k, c1 , c2 , c, m, and n, which do the minimizing, 
constitute the desired optimal control decisions for all states of the system at all 
times. 

It is envisaged that solution will be achieved through use of high speed digital 
computing machines, the minimizations being achieved through use of straight­
forward search techniques. Observe that the original minimization problem has 
been reduced to a sequence of N simpler minimization problems. Since the solu-



96 ROBERT KALABA 

tion in closed form of problems of the type under discussion here can be achieved 
only in rare cases (linear systems, quadratic criteria, as in [16], [19]) we are 
forced to turn to the study of computational techniques. 

It is interesting to note that the embedding technique can be used in attacking 
a variety of other types of problems. See [13] and [10], where many other refer­
ences are provided. 

5. Computational Considerations 

Unfortunately, it is not true that the sequence of functionsfk(c 1, c2, c, m, n), 
k = l, 2, 3, • • • , N, can be determined numerically in any routine fashion. The 
difficulty lies in the fact that in the determination of the functionfk , the function 
f k-l , which depends on five variables, must be stored in the computing ma­
chine's memory. If each variable assumes just 102 values, then in all 1010 func­
tional values have to be stored, a number well beyond the 104 or 105 words of 
high-speed storage available in current machines. This is the "curse of dimension­
ality" difficulty discussed by Bellman in [2]. Let us then turn to the important 
question of reduction of the computational difficulties in the determination of 
the sequence of functions Uk}. 

We observe that use of a Lagrange multiplier can effectively eliminate one 
variable, ( [5]). We introduce the new cost function 

N-1 N-1 

(1) L (\ uk \ + \ vk \)h + exp(\ uN I + I VN [) + AL (Ek - a1)2h, 
k=O k=O 

where;\ is a positive parameter. For each choice of;\ we now have to compute a 
sequence of functions of four variables f k ( c1 , c2 , m, n) ) , the dependence on c ha v­
ing been eliminated. The larger;\, the smaller will be the sum I:f,:"o1 ( Ek - ai)2h, 
which is an aid in determining the appropriate value of ;\, the one which causes 
the last of inequalities (3.8) to be just satisfied; The recurrence relations become 

fk(c1, c2, m, n) = ([ c1 I + I c2 [)h + Min j;\(z - ai)2h 
a:::;;;z ::5'.,b 

(2) + Pm,nfk-1(c1 + C2h, C2 - [z(ci - l)c2 + c1]h + h, m + 1, n) 

+ (1 - Pm,n)fk-1(c1 + c2h, C2 - [z(ci - l)c2 + c1]h - h, m, n + l} 

for k = 1, 2, • • • , N, and 

(3) + Pm,n exp [I C1 + c2h \ + \ C2 - [z(ci - l)c2 + ci]h + h \] 

+ (1 - Pm,n)[exp [\ C1 + c2h \ + \ C2 - [z(ci - l)c2 + C1]h - h \]]}. 

It would now be desirable to determine the sequences Uk} for several values of the 
parameter;\, calculate the corresponding values of I:f,:"o1 ( Ek - a1)2, and in this 
way approximate the solution of the problem for which 
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N-1 

(4) L (Ek - a1/h = c, 
k-0 

performing at the same time a valuable parameter study. Unfortunately, though, 
for currently available computers the problem is still of unmanageable size. 

Further reductions are possible. Since the difficulty is essentially one of storage 
of a function of four variables defined on a certain bounded domain, one key to 
its solution is use of a slightly more sophisticated method of storage, one not in­
volving storage of the functional values themselves. This can be achieved by ap­
proximating the functions by polynomials, for example, so that essentially only 
the coefficients of the polynomials need be stored. Of course, this implies that 
values of the functions will have to be computed as they are needed and not 
merely recalled from memory, which will add greatly to the computing time. The 
net result is that the problem may be brought from the realm of the incom­
putable to the realm of the computable. Memory requirements are reduced at the 
expense of increased times of computation. Much has been done along these lines 
[1], [3], [16]), but much remains to be done. 

But still other radically different possibilities present themselves for considera­
tion, primarily based on adaptation of Picard's classical method of successive ap­
proximation ([3]). To illustrate: it is known that if the performance of a system 
is described by linear equations and the criterion functional is a function of the 
final state involving only k of the state variables, then the process can be ana­
lyzed as a k-dimensional process, rather than one of the higher dimensionality 
( [61). Through appropriate quasi-linearization of a given set of nonlinear equa­
tions, similar to the method used in [17], we may envisage solution through suc­
cessive approximations, each approximation computation being a major compu­
tation in itself. See also [7]. 

Another approach is suggested by the realization that asking for optimal poli­
cies may be asking for too much. A more modest requirement is that we devise 
methods for merely improving on a given control policy, if it can be done. Of 
course, even when this is accomplished, the usual difficulties involving relative 
versus absolute optimal arise. Further discussion is presented in Bellman's 
monograph ( [13]). 

We note lastly that when m + n becomes large, we may have confidence that 
the estimate Pm,n is close to the true probability p. This being the case, two vari­
ables, c1 and c2 , serve to specify the state of the system. The functional equations 
then involve functions of two variables, 

(5) [z(ci - l)C2 + c1]h + h) + (1 - Pm,,.)fk-1(c1 + c2h, C2 

[z(ci - l)c2 + c1]h - h)}, 

for k = 2, 3, • • • , N, and 



98 
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+ I C2 - [z(ci - l)c2 + c,]h + h !] + (1 - Pm,n) exp[! C1 

+ c2h I + I c2 - [z(ci - l)c2 + ci]h - h !]). 

6 .. Unknown Criteria 

Let us now sketch a treatment of a process where uncertainty of a different 
type is involved, where the very purpose of the process is unknown to the con­
troller: In the course of the process, though, the controller obtains more and more 
information about the precise nature of the objective function. The process to be 
discussed fa one in which the controller seeks to have the system in the "right 
place at the right time," but does not know precisely where the "right place" is. 
Various problems involving vehicle guidance are of this genre. 

To render these ideas more precise, let us· consider a system, the physical state 
of which is governed by the equations 

(1) 

which hold for n = 0, 1, 2, • • • , N - l. We shall suppose, in the deterministic 
version, that it is desired to have the process terminate at time t = Nh with 
XN = Ca, 

More precisely, since this will in general not be possible, let the problem be 
that of selecting a control sequence ( €0 , €1 , • • • , €N-1) in such a way as to mini­
mize the expression 

(2) .l = I XN - Ca !, 
If, next, the controller does not know the value of c3 in advance, but only 

knows that 

(3) Prob {c3 = ri) = JJ 

Prob { ca = rd = l --:-p, 

where the precise value of p is known, then control may be exerted in such a 
way as. to minimize the expected value of .J, E{ .J), where 

(4) 

for 

(5) n = 0, 1, 2, • • • , N - l. 

Lastly, in the adaptive case, we assume that the precise value of p is unknown 
initially. • During the '"course of the process, though, we assume that the con­
troller is able to modify its a priori estimate of p through sampling the popula­
tion from which the final selection of c3 is to be made. As before, if the initial 
estimate of pis ei/(e 1 + c2), after observing m r1's and n r2's the estimate of pis 
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taken to be Pm,n, where 

(6) 
Pm,n = (ei + m) + (e2 +n) • 

The objective is to minimize the estimated expected value of J. For this case the 
functional equations become 

(7) fk+1Cc1' C2' m, n) = Min (Pm,nfk(C1 + c2h, C2 
a~z~b 

[z{c~ - l)c2 + c1]h, m + 1, n) + (1 - Pm,,,)fk(c1 + c2h, C2 

[z( c~ - 1 )c2 + ci]h, m, n + 1) I 

for k = 1, 2, • • • , N - l, and 

(8) f1(C1, C2, m, n) = Min (Pm,n\ C1 + C2h - r1 [ + (1 - P-m,n)[ c1+ c2h - r2 [}, 
a:::;.zsb 

where one observes that the term in brackets in the right hand side of equation 
(8) is independent of z. Details will be given in a later paper. 

7. Discussion 

The objective of a theory of adoptive control processes is the determination of 
optimal control decisions under conditions of incomplete information where, 
however, learning takes place during the unfolding of the process. In. the first 
process discussed, the controller's lack of knowledge was limited to uncertainty 
regarding the state into which the system is transformed as the result of any par­
ticular control decision. Ignorance, though, can manifest itself. in many other 
ways. The controller may not know the precise physical state of the system, 
the allowable set of decisions, or the duration of the process. As we have seen, 
not even the objective of the process may be precisely known. All of these possi­
bilities require intensive investigation. And interesting questions arise at all 
levels. 

A great many problems arise in the precise mathematical formulation of 
adaptive control problems, though the functional equation imbedding technique 
provides certain guide lines along which to proceed. 

At the analytical level we face a host of queries. These range from questions of 
convergence of solutions of the discrete-time problems to solutions of the con­
tinuous-time problems, to the determination of various structural properties of 
solutions of nonlinear functional equations. 

At the computationaUevel we face the problems of high dimensionality, sta­
bility, and so on. It is i:p.t~resting to note that the limited capabilities of modern 
computers force us to be quite ingenious in our formulations and analysis before 
the problem is submitted for computational solution. Thus the use of com­
puters-in the popular mind so suggestive of that which is routine, trite, and 
unimaginative-necessitates highly imaginative treatment by the analyst at all 
levels. Furthermore each step forward raises additional questions giving added 
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meaning to Poincare's statement, "Solution of a mathematical problem is a 
phrase of indefinite meaning." 
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