
THE DEFINITION OF FIELD OF DEFINITION1 

BY MAXWELL RosENLICHT 

1. Introduction 

The fact that Weil did not see fit to define abstract algebraic sets in complete 
generality, restricting himself to such that are irreducible, has occasioned a 
number of well-known difficulties. For example, the algebraic set consisting of 
two curves intersecting in some complicated way should be definable without an 
embedding in the large, and one should be able to introduce the notion of field 
of definition for such a thing. On a very concrete level, it was known from the 
beginning that in the "correct" definition of "algebraic group defined over k" 
each component need not be defined over k, but the correct definition of field of 
definition is not easy to give in W eil's system. Thus the multiplicative group of 
the complex nth roots of unity ought certainly to be defined over the rational 
numbers, but what should one say of a group that does not have such a nice 
affine embedding? 

Of course all problems such as these can be answered by working in the vast 
generality of Grothendieck's system, but it is obviously worthwhile to see 
specifically what happens in the classical case of W eil's geometry, and that by 
using Weil's methods. This we do here, modifying some of his definitions (in 
some cases with slight change of terminology) and giving the results as they 
then are. In most cases the line of reasoning one would use to prove the new 
statement of a result is quite standard and entirely obvious, at least as long as 
not too many steps are skipped at once, so in the next two sections we confine 
ourselves to giving a more-or-less natural and reasonably complete sequence of 
definitions and results without proof. In line with our specific objectives, no 
mention is made of sheaves. Nor do we concern ourselves with historical matters, 
although mention should be made of the definition of "algebraic set" given in 
[1, pp. 1-12], which is roughly the same as ours. 

A final section discusses the new definitions for algebraic groups and gives 
some simple applications. 

2. Affine algebraic sets 

Fix a universal domain fl, an arbitrary algebraically closed field ( of infinite 
transcendence degree over the prime field, if one wishes to use the technique of 
generic points). A set V c fln is called closed if it is the zero-locus of some subset 
of fl[X1 , • • • , XnJ, where X 1 , • • • , Xn are indeterminates; this puts the Zariski 
topology on fln, which is now compact. Call V C fln k-closed, where k is some 
subfield of fl, if Vis the zero-locus of some subset of k[X1 , • • • , Xn] and call the 
complement of such a set k-open. The Hilbert Nullstellensatz says that if V c n" 
is k-closed then V n kn is dense in V, k being the algebraic closure of k. Any 

1 This study was supported by the Air Force Office of Scientific Research. 
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automorphism u of O induces a homeomorphism of on, and if Vis a closed subset 
of O" and k a subfield of O then V is k-closed if and only if V" = V for all k-auto­
morphisms u of 0. If V c O" is k-closed and I(V) is the ideal consisting of all 
elements of O[X1, • • • , X,.] vanishing on V, then V is also the zero-locus of 
Ik(V) = I(V) n k[X]; the 0-valued functions on V induced by elements of 
O[X1, • • • , X,.] form the coordinate ring O[V] of V, isomorphic to O[X]/J(V) 
and containing the subring k[V] isomorphic to k[X]/h(V). A subset V c O" is 
called rational over k (instead of defined over k) if it is k-closed and I(V) = 
O[X] ·h(V); the subfields of O over which a given closed subset V c O" is rational 
are all subfields containing a unique minimal such field k, which is a finite ex­
tension of the prime field with the property that an automorphism of O maps 
V into itself if and only if it leaves each element of k fixed. If V c on is rational 
over k then lc[V] and O (both subrings of O[V]) are linearly disjoint over k, so 
O[V] = 0 ® k k[V]; conversely if V is k-closed and k[V] and kp-"' ( = least perfect 
field containing k) are linearly disjoint over k, then V is rational over k. If the 
subset V n kn of the closed subset V c O" is dense in V, then Vis rational over k. 

A k-closed subset V c O" that is irreducible over k ( that is, not the union of 
two k-closed proper subsets) is called a (affine) k-variety; the condition is that 
Ik(V) be a prime ideal in k[X], or that k[V] be an integral domain. Any k-closed 
subset of on is an irredundant union of finitely many k-varieties (its k-com­
ponents) in a unique manner; 0-components are called, simply, components, and 
0--varieties are called varieties. If V c on is a k-variety and V n k" is dense in V, 
then Vis a variety. The components of a k-variety V are rational over k and 
conjugate oyer k. A k-closed set V c O" is rational over kif and only if each of 
its k~components is rational over k, which is true if and only if each component 
of Vis rational over k. ( = separable part of the algebraic closure of k). A k-va­
riety V is rational over k if and only if the field of quotients k( V) of k[V] is 
separable over k and it is a variety if and only if each element of k( V) that is 
algebraic over k is purely inseparable over k. 

Let V beak-closed subset of on. The full ring of quotients O(V) of O[V] is the 
ring of rational functions on V, and the elements of k(V), the full ring of quotients 
of k[V], which is a subring of O(V), are the rational functions over k on V. If 
V1 , • • • , V. are the k-components of V, then k(V) = k(V 1) E0 • • • E0 k(V.) 
and each k(V.) is a field. For P E V define or (P), the semilocal ring of P in 
k(V), by 

or (P) = {u/v Ju, v E k[V], v not a zero-divisor in k[V], v(P) "F- 0), 

and define ov(P), the semilocalring of Pon V, by ov(P) = o~(P). The elements 
of o v(P) are called the rational functions on V that are defined at P; in the special 
case that Vis rational over k we have k(V) no v(P) = or (P). If V' c Vis the 
union of certain k-components of V, including all those that contain P, then the 
"restriction" k(V) -+ k(V') induces a surjection or (P)-+ or (P), and if V' is 
minimal then or' (P) is a local ring and or (P) = or (P) E0 k(V"), where V" 
is the union of the remaining k-components of V. For a given f E k(V), the 
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points P E V such that f E or (P) form a k-open dense subset of V, and 
nPEVor(P) = k[V]. 

If V, W are k-closed subsets of lr, rr respectively, then V X W is le-closed in 
nn+m, and in fact h(V) and h(W) together give a basis for h(V X W) if 
either V or W happens to be rational over le; as a consequence, if both V and 
Ware rational over k, so is V X W. If V, W are le-varieties one of which is irre­
ducible, then V X Wis a le-variety. By a rational map over le from V into W we 
meanaclosedsubset<I> c V X Wsuchthatthereexistelementsj 1 , • • • ,fm E k(V) 
such that <I> is the closure of the set of all points (P, Ji(P), • • • , fm(P)), where P 
ranges over all points of V such that each Ji E or (P). If Vis rational over le, so 
is the above rational map. The rational map <I> clearly determines f1 , • • • , fm, 
and conversely any !1 , • • • , f m E le(V) determine a rational map over k from V 
into nm. The above rational map is said to be defined at a point P E V if each 
{i E o v ( P), and is said to be defined over le at P if eachfi E or ( P) ; the points of V 
at which the rational map is defined (resp. defined over le) are therefore dense 
le-open subsets of V, these two subsets coinciding if V is rational over k. We 
often identify <I> with the associated map <p from the subset of Von which the 
map is defined into W; <pis then continuous (where it is defined) and if 'P{V} 
denotes the closure of the image of <p then 'P{ V} is le-closed, is a k-variety if Vis, 
and is rational over k if V is. 

3. Algebraic sets 

By an algebraic set over k is meant a topological space V, together with a s,et 
of functions ff = {f:D 1 -;. n} from certain dense open subsets {D1} of V into n 
such that 

(1) if { U a} aEA is a set of open subsets of V andf: U aEA U"-;. n is a function 
whose restriction to each U" is the restriction to U" of some f" E ff, then f is the 
restriction to UaEAUa of some element of ff; and such that 

(2) there exists a finite set {Wi}iEI of le-closed affine algebraic sets and 
maps 'Pi: Wi - V, i E I, such that 

(a) V = uiEI 'Pi(Wi), 
(b) each 'Pi:Wi-;. Vis a homeomorphism onto an open subset of V, 
( c) for each i E I, f E ff, there is a rational function in le(Wi) that is de­

fined over le precisely on <p---;1(D1) and agrees there with !'Pi, and all elements of 
k(Wi) arise in this way, 

(d) if i, j E I then the set {(<p---;1(x), 'P71cx)) Ix E 'Pi(Wi) n <p/W1)l 
is closed on Wi X W1. 

Thus an algebraic set over k is the union of a finite set of affine algebraic sets 
over k, with certain identifications. Indeed, 'PT1'Pi defines a rational map over k 
from certain components of Wi into W 1 , the map being defined over k precisely 
on 'Pi1C'PiW1)), with the inverse rational map 'Pi1'Pi defined on the image of this 
set; conversely a finite set of affine algebraic sets over k, {WiLEr, together with 
rational maps {'PT1'Pikiu from certain components of Wi into W 1 , will give an 
algebraic set over k provided certain necessary conditions are satisfied. Defining 
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an affine open subset over k of an algebraic set V over kin the obvious manner 
(as an affine algebraic set W over k together with a map~: W--+ V satisfying 
(2) (b),(c)), one verifies that if we adjoin to the above set {Wi, ~i} any other 
affine open subset of V over k then condition (2) ( d) is automatically satisfied, 
so that the above { Wi , ~i} iEI may be taken to be any finite set of affine open 
subsets over k that cover V. As usual, the intersection of two affine open subsets 
over k of V is also such a set. An algebraic set over k clearly gives rise to an 
algebraic set over any field K between k and !J, what is involved being merely 
the addition of more functions. Most of the notions for affine algebraic sets over 
k generalize to arbitrary algebraic sets over k, for example the notions of rational 
map over k, k-morphism (i.e. rational map over k that is everywhere defined over 
k), irreducibility ( over k or Q), ( k-) components, k-closed and k-open subsets of 
an algebraic set over k ( themselves algebraic sets over k). If V is as above, the 
set 5' can be made into a ring k(V) in the obvious way, and k(V) 
= k(V 1) EB • • • EB k(V.), Vi, • • • , V, being the k-components of V. Call V 
rational over k if each of the W/s above is rational over k; then all affine open 
subsets of V over k are rational over k. The algebraic set V over k is rational 
over kif and only if the same is true for all k-components of V or, equivalently, 
if and only if k( V) and Q (both subrings of !J( V)) are linearly disjoint over k. 
Clearly the disjoint union or product of two algebraic sets over k is an algebraic 
set over k, rational over k if the original algebraic sets are. Among the many 
other results that reduce directly to the affine case is that if V is an algebraic 
set rational over k, k[V] the ring of everywhere defined rational functions on V 
over k, and Ir. any field between k and !J, then K[V] = K ® k k[V] (last theorem 
of Weil's Foundations). A related result is that if V,W are algebraic sets rational 
over k then k[V X W] = k[V] ®k k[W]. 

The dimension of a variety V is the transcendence degree of !J( V) over !J and 
the dimension of any algebraic set is the maximum dimension of its components; 
as usual, each component of a k-variety has the same dimension equal to the 
transcendence degree of k(V) over k. There is equally little difficulty extending 
to algebraic sets over k the notion of completeness (independent of base field) 
and local notions, such as normality and simplicity of a point of an algebraic set 
over k (relative to k, or absolute, i.e. relative to !J); for results on k-normality 
and k-simplicity of a point the local results of Zariski for projective varieties can 
be carried over immediately to the general case, and similarly for the absolute 
results of Weil. Similarly for Weil's intersection theory. 

4. Algebraic groups 

By definition an algebraic group over k is an algebraic set G over k, together 
with a group structure on G such that the map G X G --+ G given by 
(g1 , g2 ) --+ gig"21 is a k-morphism. An algebraic group rational over k is an algebraic 
group over k that is rational over k ( as an algebraic set). As usual, if the algebraic 
group G is rational over k then so is the identity element e, and so is the com­
ponent of the identity Go . There is. a similar definition of trans! ormation space 
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over k ( or rational over k) for an algebraic group over k ( or rational over k). A 
homogeneous space is a transformation space on which the group operates tran­
sitively. 

It is a direct consequence of known results that in a separable rational homo­
morphism over k of algebraic groups rational over k, the kernel is rational over 
k; but what of the converse, i.e., how do we construct factor groups without 
extending the field of rationality? One method would be that of Weil, whose 
essence is the construction of honest-to-goodness algebraic groups and transfor­
mation spaces corresponding to similar objects that are given only "birationally" 
([4]); this method can be abbreviated in part by applying known results to get 
this over a separable algebraic extension of the base field, at which point we have 
a field-descent problem that can be handled by [5] or [2, pp. 108-111]. In what 
follows we give a slight modification of a method of Chevalley ( [1, expose 8]). 

The following Lemma 1 will be used repeatedly below. One immediate conse­
quence of it will be that if r: V - V /G is a quotient space, with everything 
rational over k, then any rational function on V /G that is ink( V) is actually in 
k( V /G). Another consequence will be an immediate sharpening of the succeeding 
Lemma 3: if all the data in that lemma are rational over k, together with the 
relevant quotient spaces, then so is the isomorphiRm whose existence is affirmed. 

LEMMA 1. Let V - W - Z be a sequence of rational maps of algebraic sets over 
k, with V - W and V - Z rational maps over k, the former inducing a morphism 
from its domain of definition onto a dense subset of W. Then if Vis rational over k, 
so is the rational map W - Z. 

We can assume that V,W are affine k-varietieR and that Z is the affine linen, 
in which case the result says that any rational function f E n(W) n k( V) is 
actually in k( W). To see this, write f = '1:,aJ./};a;g, , where the sums are finite, 
each f., g; E k[W], the denominator does not vanish on any component of W, 
and the various a/s are elements of n that are linearly independent over k. The 
equation };a;(!; - jg;) = 0 and the linear disjointness of n and k( V) over k 
imply that f, - Jg. = 0 for all i, giving f E k( W). 

LEMMA 2. If V is a homogeneous space for the algebraic group G, all rational 
over k, and H C G is a normal algebraic subgroup, also rational over k, then there 
exists a quotient space V / H such that V / H and the natural projection r: V - V / H 
are rational over k. 

Recall that "r: V - V /His a quotient space" means that r is a morphism 
inducing a bijection between H-orbits on V and points of V /H such that any 
rational function on V that is constant on H-orbits and defined at any given 
point of V is actually a rational function on V / H that is defined at the corre­
sponding point of V / H. The result is known to be true if k is algebraically closed, 
but it is worth mentioning that this can be proved directly in an easy way by 
first reducing to the case in which V is irreducible, then noting that a suitable 
k-open subset of any affine model over k of the field of H-invariant functions in 
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k(V) is the quotient Space modulo.Hof an H-invariant k-open subset of V, and 
finally obtaining V / H by using, the transitivity of the operation of G on V and 
the unicity of quotient spaces. Having constructed r: V - V/H rational over k, 
we have to show that V /Hand r• can ·be modified in such a way as to make 
them both rational over k. In virtue of the unicity of quotient spaces, it suffices 

. to prove that any v E V that is algebraic over k has a dense k-opeii H-invariant 

. neighborhood V' such that V! /H exists and V' /Hand the map V' ~ V' / H may 
both be chosen rational over LTo do this start with a dense k-open affine subset 
U c V / H and replace this by a suitable translate, if necessary, so as to be able 
to assume that r maps all the k-conjugates of v into U. Letting u range over the 
k-automorphisms of n, r .. : V ~ ( V / H)"' is also a quotient space, hence iso­
morphic to r: V - V /H, so :,-.. (r-1( U) )"' is affine, hence also r( r-1( U) )"'. Re­
placing U,ifnecessary, bythefiniteintersection n .. r(r- 1(U)t = rn .. (r-\U))"', 
we see that we could have chosen U such that r -1( U) is k-open on V. Thus any 

• element of k[V] is of the form EcJ;. , with the els in k and linearly independent 
· over k and each f., in .k[r -i( U)J. By linear disjointness, each fiis H-invariant, 
hence E k[U]. By using enough f.'s we get an isomorphic copy of U that .is 
rational over k, proving Lemma: 2. 

LEMMA 3. Let V1, V2 be homogeneous spaces for the algebraic groups G1, G2 
•• respectively, and let H1 , H 2 be riormal algebraic subgroups of G1 , G2 respectively. 

Then Vi X V2 is homogeneous for G1 X G2 under the operation (g1 , g2)(v1 , v2) 
~- (g1v1, g2v2), and the eq'lial'ity (H1 X'H'l)(v1, v2) = (H1v1, H2v2) induces an iso­

, morphism (V1 X V2)/(H1 X H2) ~ (V1/H1) X (V2/H2), 

The nat~ral map V1° X. V2 ~·(V1/Hi) X (V2/H2) maps H1 X H2-orbits into 
• points, hence goes through (V 1 X V2)/(H1 X H2) (which exists by Lemma 2), 
i;e. we have a morphism (V1 X V2)/(H1 X H2) - (V1/H1) X (V2/H2). This 
lat~er is bijective, and since it is also separable (component-wise) it is birational 
(component-wise), hence i,nduces an isomorphism between certain dense open 
subsets. By the unicity 'of quotient spaces, each element of G1 induces a trans­
lation on Vi/ H 1 that is an isomorphism, and similarly for the operation of G2 
,.on V2/H2, and of G1 X G2 on (Vi X V2)/(H1 X H2), By transitivity, our iso­
morphism between dense open subsets is an isomorphism everywhere. 

'THEOREM 1. Let H be an algebraic subgroup of the algebraic group G, .both ra­
tional over k, and let H operate on G by the rule (h,g) - gh- 1. Then the quotient 
space G/H (right coset space) exists, and G/H and the natural projecton r:G -
G/H may be chosen rational over k, in which case G/H possesses the structure of a 
homogeneous space for G, also rational over k, such that g1(rg2) = r(g1g2). If His 
normal in G, then G/H possesses the structure of an algebraic group such that r is a 
homomorphism, all rational over k. If, furthermore, Vis a homogeneous space for G, 
also rational over k, then V / H exists and V / H and the natural projection V - V /H 
may be taken to be rational over k, in which case V / H possesses the structure of a 
homogeneous space for G/H, also rational over k, such that (gH)(Hv) = Hgv. 
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His normal in G X H, which operates on G by the rule (g,hh = g7h- 1, so, 
by Lemma 2, r:G - G/H exists, all rational over k. Applying Lemma 3 to 
V1 = G1 = G, H1 = { e}, V2 = G, G2 = G X H ( operating as above on V2 = G), 
H2 = e X H, we get (G X G)/(e X H) ~ G X (G/H). But the k-morphism 
G X G - G/H defined by (g1, g2) - g1g2H is (e X H)-invariant, hence goes 
through (G X G)/(e X H) ~ G X (G/H), so we have a k-morphism G X 
(G/H) - G/H, giving the structure of G/H as a homogeneous space for G, 
rational over k. If His normal in G, the above morphism G X G - G/H is 
(H X H)-invariant, hence goes through (G/H) X (G/H) - G/H, proving 
G/H an algebraic group rational over k, with r a homomorphism. For the last 
part note that the k-morphism G XV - V /H given by (g, v) -Hgvis (H X H)­
invariant, hence goes through (G X V)/(H X H) ~ (G/H) X (V /H); so 
V / H is indeed homogeneous for G / H, all rational over k. 

THEOREM 2. An algebraic group of matrices G that is rational over k is reducible 
to triangular form by a matrix rational over kif and only if G is solvable, [G, G] con­
sists of uni:potent elements, and all rational characters of G are rational over k. In 
this case, if H is any algebraic subgroup of G that is rational over k and consists of 
semisimple elements, this can be done in such a way that H goes into a group of 
diagonal matrices. 

If G is reducible to triangular form by a matrix that is rational over k, then 
to prove our contentions we may suppose G in triangular form to· begin with. 
Then G is clearly solvable and [G, G] unipotent and it remains to show that any 
rational character of G is rational over k. The map r which associates to each 
element of G the diagonal matrix with the same diagonal elements is a homo­
morphism rational over k whose kernel is the unipotent part G,,. of G. We claim 
that r is separable: it suffices to prove this for the component of the identity 
Go of G, so G can be assumed connected, and we may also suppose ( extending 
the field k and conjugating G by a suitable triangular matrix if necessary) that 
G has a maximal torus Tin diagonal form, in which case the separability of r 
comes from the facts that r is the identity on T and trivial on Gu and that 
G = T X G,,.. r being separable and rational over k, all rational characters on 
Gare rational characters on G/Gu ~ rG, a group of diagonal matrices, and it is 
known that for such a group all rational characters are rational over the prime 
field. Conversely, suppose that G satisfies the stated conditions. The same 
conditions then hold for any image of G under a rational homomorphism over k, 
so to prove that G can be put into triangular form by a matrix rational over kit 
suffices, by an obvious induction argument, to show that the vector space V on 
which G operates (supposed of dimension > 1) has a G-invariant subspace that 
is rational over k. If G is unipotent the subspace consisting of all v E V such 
that gv = v for all g E G is known to be -;t-{ O}. This subspace, which is clearly 
k-closed, is also rational over k, , since G has a dense subset of points rational 
over k, and the subspace is given by linear equations. Therefore this subspace is 
rational over k, settling the case G unipotent. For G arbitrary, its subgroup 
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[G, G] is normal, unipotent, and rational over k, and we have shown that the 
subspace W c V consisting of all vectors on which [G, G] operates trivially is 
rational over k; since W is G-invariant and ;= { O}, we may pass to the operation 
of G/[G, G] on W to assume G commutative. Since G can now be triangulated 
(over n), there exists a rational character x on G such that the set of all v E V 
such that gv = x(g)v for all g E G is ;= {O}; the set of all these v's is a G-invariant 
subspace of V that is rational over k (by the same argument as above), so' we 
are done, except for the contention about the subgroup H. But we already know 
that the vector space V on which G operates has a composition series 
V = Vo :J V1 :::J • • • :J Vn = {O}, each V,: being a G-invariant subspace rational 
over k, and all we need do is pick, for each i = 0, • • • , n - 1, an element of 
V., not in V.:+1, that is both rational over k and a characteristic vector for each 
element of H. Restricting our attention to V., we see that it suffices to prove 
that a group of semisimple matrices in triangular form that is rational over k 
can be diagonalized over k. But such a group is commutative, hence reducible to 
dia;gonal form over n, and a minor modification of the above argument proves 
diagonalizability over k. 
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