ON THE COHOMOLOGY GROUPS OF THE CLASSIFYING SPACE FOR THE STABLE SPINOR GROUP

BY EMERY THOMAS*

1. Introduction

Denote by $SO(n)(n \geq 2)$ the group of $(n \times n)$ rotation matrices and let $Spin(n)$ denote the universal covering group of $SO(n)$. Thus we have the following exact sequence of groups,

$$
1 \to Z_2 \to Spin(n) \to SO(n) \to 1,
$$

where *Z* denotes the integers and Z_r the integers mod *r* ($r \geq 2$). According to Borel, such an exact sequence of groups gives rise to a fiber space

$$
B_{z_2} \longrightarrow B_{\text{Spin}(n)} \longrightarrow B_{\text{SO}(n)} ,
$$

where in general B_g denotes the classifying space for a topological group G. Now consider the stable groups ([14]),

$$
SO = \bigcup_{n=2}^{\infty} SO(n), \quad Spin = \bigcup_{n=2}^{\infty} Spin(n).
$$

Since the above fibering exists for each $n \geq 2$, we obtain in the limit the fiber space

$$
K(Z_2, 1) \xrightarrow{i} \hat{B} \xrightarrow{\pi} B,
$$

where $K(Z_2, 1) = B_{Z_2}, \hat{B} = B_{Spin}$, and $B = B_{SO}$.

Because the integral cohomology groups of $K(Z_2, 1)$ are either zero or Z_2 , it is clear that *B* and *B* have isomorphic cohomology groups with rational coefficients and with coefficients mod p , where p is an odd prime. The purpose of this paper is to compute the integral and mod 2 cohomology groups of *B.*

Let us recall the results for B :

 $H^*(B;Z_2) = Z_2[W_2, W_3, \cdots]; H^*(B;Z) = Z[P_1, P_2, \cdots] \oplus T$, where $2T = 0$. Here $W_i \in H^i(B;\mathbb{Z}_2)$ denotes the i^{th} Stiefel-Whitney class and $P_j \in H^{ij}(B;\mathbb{Z})$ denotes the i^{th} Pontrjagin class.¹ We shall show

THEOREM (1.1). For each positive integer *i* not of the form $2^r + 1$ ($r \ge 0$), *set* $W_i^* = \pi^* W_i$. *Then*, $H^*(\hat{B};Z_2) = Z_2[W_4^*, W_6^*, W_7^*, \cdots]$.

For any graded, anti-commutative algebra A denote by A_+ the ideal of positive dimensional elements. Define the *decomposition ideal* of *A* to be the ideal generated by $A_+ \cdot A_+$. In particular denote by D and D_2 the decompositions ideals

^{*} Research supported by the Air Force Office of Scientific Research.

¹ Strictly speaking W_i is characterized by the fact that when restricted to $H^*(B_{SO(n)};Z_2)$. $(n > i)$, it becomes the ith Stiefel-Whitney class of the classifying bundle over $B_{80(n)}$ —and similarly for P_i .

for the respective algebras $H^*(B;Z)$ and $H^*(B;Z_2)$. Set

$$
D^{i} = D \cap H^{i}(B;Z), D_{2}^{i} = D_{2} \cap H^{i}(B;Z_{2}) \quad (i \geq 0).
$$

We shall prove

THEOREM (1.2). *There are cohomology classes* ${Q_i}$, ${\Phi_i}$, ${\Psi_i}$ ($i \geq 1$) *with the following properties:*

(1.3) $Q_i \in H^{4i}(\hat{B},Z), \Phi_i \in D^{4i} \subset H^{4i}(B;Z), \quad \Psi_i \in D_2^i \subset H^{i}(B;Z_2).$

(1.4) *If i is not a power of* 2, *then*

$$
Q_i = \pi^* P_i, \qquad \Phi_i = 0, \qquad \Psi_i = 0.
$$

Let $j = 2^r$, *for* $r = 0, 1, \cdots$ *Then*

(1.5)
$$
\pi^* P_{2j} = 2Q_{2j} + Q_j^2 - \pi^* \Phi_{2j}, \qquad \pi^* P_1 = 2Q_1 ;
$$

(1.6) $\rho_2(Q_i) = \pi^*(W_{4i} + \Psi_{4i}), \qquad \rho_2(\Phi_i) = (\Psi_{2i})^2.$

Moreover,

(1.7)
$$
H^*(\hat{B};Z) = Z[Q_1, Q_2, \cdots] \oplus \hat{T}, \text{ where } 2\hat{T} = 0.
$$

Furthermore, if ${Q'_i}$ $(i \geq 1)$ *is a second set of cohomology classes satisfying* (1.3) - (1.6) (*relative to a fixed choice of the* Φ 's *and the* Ψ 's) *then* $Q_i = Q'_i$.

Here $\rho_r(r \geq 2)$ denotes the cohomology homomorphism induced by the factor map $Z \to Z_r$. In Section 5 we give a specific choice for the classes Φ and Ψ . The low dimensional values of these classes are as follows:

(1.8)
$$
\Phi_i = 0 \quad \text{for} \quad 1 \leq i \leq 7; \qquad \Phi_8 = P_2 P_6 + P_3 P_5 ;
$$

$$
\Psi_i = 0 \quad \text{for} \quad 1 \leq i \leq 15; \qquad \Psi_{16} = W_4 W_{12} + W_6 W_{10} .
$$

Let η be an *SO*-bundle over a complex *K* and suppose that η is induced by a map *f* from *K* to *B*. Suppose that $W_2(\eta) = 0$. Then, as is well-known, *f* may be factored into a composition

> *g* \hat{p} π $K \xrightarrow{\sim} B \longrightarrow B,$

where the map g is unique up to homotopy. Thus we call η a *Spin bundle*. Recent work of Atiyah, Borel, Hirzebruch and others (see, for example, [1], [3]) indicates the importance of these bundles. Taking the unique cohomology classes Q_i given in (1.2) (relative to the choice for the Φ 's and Ψ 's given in §5), define

(1.9)
$$
Q_i(\eta) = g^* Q_i \in H^{ii}(K;Z) \quad (i \geq 1)
$$

and call these cohomology classes the *Spin characteristic classes* of the bundle η .

Let *K* denote the *CW*-complex which consists of a 1-sphere with a 2-cell attached by a map of degree 4. Denote by K_2 the 2-fold suspension of K. From the standpoint of K_2 , the complex \hat{B} may be considered an Eilenberg-MacLane space of type $(Z,4)$. Pick a generator *u* for the group $H^4(K_2;\mathbb{Z}) \approx \mathbb{Z}_4$. By (1.1) ,

(1.5) and (1.6) one sees that the element Q_1 generates $H^4(\hat{B};Z) \approx Z$. Thus there is a map *g* from K_2 to \hat{B} such that $g^*Q_1 = 2u$. Denote by *n* the Spin-bundle over K_2 corresponding to the map $\pi \circ g$. Then,

$$
P_1(\eta) = (\pi \circ g)^* P_1 = g^*(2Q_1) = 4u = 0;
$$

\n
$$
W_4(\eta) = (\pi \circ g)^* W_4 = g^*(\rho_2 Q_1) = \rho_2(2u) = 0;
$$

\n
$$
Q_1(\eta) = g^* Q_1 = 2u \neq 0.
$$

Thus η is a bundle whose regular characteristic classes are trivial but for which $Q_1(\eta) \neq 0$. Using the Bott divisibility theorems one can construct an analogous complex K_{4k-2} and *Spin* bundle η_{4k-2} ($k \geq 1$) such that

$$
P(\eta_{4k-2}) = 1; W(\eta_{4k-2}) = 1; Q_k(\eta_{4k-2}) \neq 0.
$$

While the classes Q_i are given uniquely by making a specific choice of the Φ 's and the Ψ 's, it would be more desirable to obtain the uniqueness by means of axioms which have geometric significance. As yet I have not been able to do this. In the axioms given for the regular characteristic classes (see $[5]$, $[6]$) the behavior of the classes on the Whitney sum of two bundles has played an important role. Let η and ζ be two *Spin* bundles over the same base space. Then the Whitney sum $\eta \oplus \zeta$ is also a *Spin* bundle. Using (1.5), (1.6) and the known facts about Pontrjagin classes ([12, (3)]) one can easily show:

$$
(1.10) \quad If \ k \leq 3, \ then \ Q_k(\eta \oplus \zeta) = \sum_{i+j=k} Q_i(\eta) \cup Q_j(\zeta).
$$

$$
Q_4(\eta \oplus \zeta) = \sum_{i+j=4} Q_i(\eta) \cup Q_j(\zeta) + (Q_2(\eta) + Q_2(\zeta))(Q_1(\eta) \cup Q_1(\zeta)).
$$

The formula for the higher dimensional *Q's* will be very complicated, and I do not know it explicitly.

The proof of (1.1) is given in the following section while the subsequent sections are devoted to the proof of (1.2) . I would like to thank John Milnor for his helpful suggestions concerning this paper.

2. Proof of (1.1)

Let X be a topological space that has finitely-generated (integral) cohomology groups in each dimension. Taking cohomology groups with coefficients in a field *k*, we will say that $H^*(X)$ has a simple system of generators (see Borel, [2]) if $\text{there are elements } x_0\,,\,x_1\,,\,x_2\,,\,\,\cdots\,\in\,H^*(X)\text{ such that the totality of monomials }$ $x_{i_1}x_{i_2} \cdots x_{i_r}$ ($0 \leq i_1 < i_2 < \cdots < i_r$, $r \geq 1$) forms a k-vector space basis for $H^*(X)$. In this case we write $H^*(X) = \Delta(x_0, x_1, \dots).$

Consider now a (Serre) fiber space $F \xrightarrow{i} E \xrightarrow{\pi} B$, where we assume for simplicity that the base space B is 1-connected. Recall that one then has the transgression operator, which is a homomorphism of degree $+1$ from a subgroup of $H^*(F)$ to a factor group of $H^*(B)$.

LEMMA (2.1). *Taking coefficients in a field k, suppose that*

$$
H^*(F) = \Delta(x_0, x_1, \cdots), \qquad H^*(B) = k[y_0, y_1, \cdots] \otimes Q,
$$

where x_i is transgressive $(i \geq 0)$, y_i represents its transgression and Q_i is a sub*algebra of* $H^*(B)$. If char $k \neq 2$, *assume each x_i* has odd dimension. Then, $\pi^*:Q$ $\approx H^*(E)$, where π^* denotes the cohomology homomorphism induced by π .

The proof follows very easily from Theorems (13.1), (16.1) of [2] and the spectral sequence comparison theorem of Zeeman $([15])$. We leave the details to the reader.

We apply this² to the fiber space $K(Z_2, 1) \rightarrow \hat{B} \rightarrow B$, given in §1. Taking coefficients mod 2; let x_0 denote a generator for $H^1(Z_2, 1)$. Then $H^*(Z_2, 1)$ $= Z_2[x_0]$. For $r \geq 1$, define

$$
x_r = (x_0)^{2^r} = \mathrm{Sq}^{2^{r-1}} \circ \cdots \circ \mathrm{Sq}^2 \circ \mathrm{Sq}^1(x_0),
$$

where $Sqⁱ$ denotes the Steenrod operator. Thus,

(2.2)
$$
H^*(Z_2, 1) = \Delta(x_0, x_1, \cdots).
$$

Consider now the polynomial algebra $H^*(B) = Z_2[W_2, W_3, \cdots]$, and recall the formula of Wu:

$$
(2.3) \t\t SqiWi+1 = W2i+1 + \sum_{2 \leq t \leq i} W_t W_{2i+1-t} \quad (i \geq 1).
$$

対する たいき ようしょう

Set

$$
y_0 = W_2
$$
, $y_r = \text{Sq}^{2r-1} \circ \cdots \circ \text{Sq}^2 \circ \text{Sq}^1 W_2$ $(r \ge 1)$.

Then by (2.3) and the Cartan product formula,

$$
y_r \equiv W_{2r+1} \mod D_2
$$

and therefore,

(2.4)
$$
H^*(B) = Z_2[y_0, y_1, W_4, y_2, W_6, W_7, \cdots]
$$

$$
= Z_2[y_0, y_1, y_2, \cdots] \otimes Z_2[W_4, W_6, W_7, \cdots].
$$

Now the element $x_0 \in H^*(Z_2, 1)$ is transgressive (in the fibering we are considering) and y_0 is its (unique) representative. Since the transgression operator commutes with the Steenrod operations, we see that each element x_i ($i \geq 1$) is transgressive and y_i represents its transgression. Therefore, (1.1) follows at once from (2.1) , (2.2) , and (2.4) .

3. The Pontrjagin square

Recall that $H^*(B;Z) = Z[P_1, P_2, \cdots] \oplus T$. Denote by *L* the subset of $Z[P_1, P_2, \cdots]$ which consists of those polynomials whose non-zero coefficients are all $+1$, together with the zero polynomial. Set $M = L^+ + T \subset H^*(B;\mathbb{Z})$; that is, a cohomology class $u \in M$ if, and only if, $u = l + t$, where $l \in L$, $t \in T$. The following facts are then easily ascertained.

² The following proof is based on the one given by Borel for Propositions $(15, 2)$ and (15, 21) in *"Sur l'homologie et la cohomologie des groupes de Lie compact connexes,* Amer. Jr of Math., **76** (1954), pp. 273-342. n yn Ni

(3.1) *Let x and y be monomials in L. Then xy is a monomial in L.*

 (3.2) Let $z \in M$ and $t \in T$. Then $tz = zt \in T \subset M$. If $\dim z = \dim t$, then $z + t \in M$.

 (3.3) ρ_2 | *M is a monomorphism.*

We show

LEMMA (3.4). Let $u \in H^*(B;\mathbb{Z}_2)$. Then there is a unique element $U \in M$ such *that* $\rho_2(U) = u^2$. Moreover, if u is decomposable, then so is U.

The uniqueness of the class U follows from (3.3) . To show the existence suppose first that *u* is a generator for the polynomial algebra $H^*(B;Z_2)$. Since

$$
\rho_2(P_i) = (W_{2i})^2, \quad \rho_2(\delta \mathrm{Sq}^{2i} W_{2i+1}) = (W_{2i+1})^2,
$$

and since $P_i \in L$, $\delta Sq^{2i}W_{2i+1} \in T$, we have proved (3.4) for this case. (Here δ is the Bockstein coboundary from Z_2 to Z .) Suppose next that u is a monomial of degree > 1 . Then (3.4) follows at once from (3.1), (3.2) and the fact that ρ_2 is a multiplicative homomorphism. Moreover, when u is a monomial, the class *U* is then either a monomial in *L* or an element of *T*. Now let $u = u_1 + \cdots + u_r$, where the u_i 's are distinct monomials in $H^*(B; Z_2)$. Then there are elements $U_1, \cdots, U_r \in M$ such that $\rho_2(U_i) = u_i^2$, and we may number these elements in such a way that for some integer $q \leq r$, the elements U_1, \cdots, U_q are monomials in *L* and U_{q+1} , \dots , $U_r \in T$. Since u_1 , \dots , u_q are all distinct monomials it is clear that $U_1 + \cdots + U_q$ is a polynomial in L. Hence, setting $U = (U_1 + \cdots + U_q) + (U_{q+1} + \cdots + U_r)$ we obtain the desired class, recalling that

$$
u^{2} = (u_{1} + \cdots + u_{r})^{2} = u_{1}^{2} + \cdots + u_{r}^{2}.
$$

For any class $u \in H^*(B; Z_2)$ we define its *integral representative* to be the unique class $U \in M$ given in (3.4). Thus, if dim $u = q$, then dim $U = 2q$, and $\rho_2(U) = u^2$. Also, if *u* is decomposable, then so is U.

Define *P* to be the subalgebra of $H^*(B; Z_2)$ which is generated by W_2^2 , W_4^2 , W_6^2 , \cdots , W_{2i}^2 , \cdots . Define *S* to be the (vector) subspace of $H^*(B; Z_2)$ which has as basis the totality of monomials

$$
pW_{2i_1}\,\cdots\,W_{2i_a}W_{2j_1+1}\,\cdots\,W_{2j_b+1}\,,
$$

where $p \in P$, $i_1 < \cdots < i_a$, $a \ge 1$; $j_1 \le \cdots \le j_b$, $b \ge 0$; and $i_1 \le j_1$, if $b > 0$. Finally denote by \mathfrak{P}_2 the Pontrjagin square and by θ the cohomology homomorphism induced by the inclusion $Z_2 \subset Z_4$. We show

LEMMA (3.5). Let u be a monomial in $H^*(B; Z_2)$. Then there is a unique class $v \in S$ *such that*

$$
\mathfrak{P}_2(u) = \rho_4(U) + \theta(v),
$$

where U is the integral representative for u. Moreover, if u is decomposable then so is v.

Recall from (11, §2] that we have a vector space splitting

$$
(3.6) \tH^*(B; Z_2) = P \oplus \beta S \oplus S,
$$

where $P \oplus \beta S =$ Kernel β , $\beta S =$ Image β . Here β is the Bockstein coboundary $\rho_2\delta$. Since Kernel $\theta = \text{Image } \beta = \beta S$, it is clear that $\theta \mid S$ is a monomorphism and hence the class *v* is unique.

Now Wu (14], (10] has shown that

(3.7)
$$
\mathfrak{P}_2(W_{2j}) = \rho_4(P_j) + \theta[W_{4j} + \sum_{0 < i < j} W_{2i} W_{4j-2i}],
$$

$$
\mathfrak{P}_2(W_{2j+1}) = \rho_4(\delta \operatorname{Sq}^{2j} W_{2j+1}), \text{ for } j \geq 1.
$$

Define

$$
\Omega_{4j} = \sum_{0 < i < j} W_{2i} W_{4j - 2i} \quad (j \geq 1),
$$

which clearly is an element in *S*. Suppose now that the monomial u , in (3.5) , is a generator $W_k(k \geq 2)$. Setting

$$
U = P_j, \t v = W_{4j} + \Omega_{4j} \t (if k = 2j)
$$

$$
U = \delta S q^{2j} W_{2j+1}, \t v = 0 \t (if k = 2j + 1),
$$

we obtain the desired classes.

We complete the proof of (3.5) by an inductive argument. Suppose that the lemma has been proved for monomials of degree $n(n \geq 1)$, and let *u* be a monomial of degree $n + 1$. Then, $u = u_1 W_i$, where u_1 is a monomial of degree *n* and $i \geq 2$. Therefore there are classes U_1 , $\overline{U} \in M$, and v_1 , $\overline{v} \in S$ such that

$$
\mathfrak{P}_2(u_1) = \rho_4(U_1) + \theta(v_1), \qquad \mathfrak{P}_2(W_i) = \rho_4(\bar{U}) + \theta(\bar{v}).
$$

Now by equation 4.5 (2) of [9],

$$
\mathfrak{P}_2(u) = \mathfrak{P}_2(u_1) \mathfrak{P}_2(W_i) + \theta [(\mathrm{Sq}^{r-1} u_1)(W_i \beta W_i) + (u_1 \beta u_1)(\mathrm{Sq}^{i-1} W_i)],
$$

where dim $u_1 = r > 0$. Consequently,

 $\mathfrak{P}_2(u) = \rho_4(U_1\bar{U}) + \theta[u_1^2\bar{v} + v_1W_1^2 + (\text{Sq}^{r-1}u_1)(W_i\beta W_i) + (u_1\beta u_1)(\text{Sq}^{i-1}W_i)].$ Here we have used the fact that $\theta(v_1)\theta(\bar{v}) = 0$; that $\theta(a)\rho_4(b) = \theta(a\rho_2b)$ for any classes $a \in H^*(B; Z_2)$, $b \in H^*(B; Z)$; and that U_1 , \tilde{U} are the respective integral representatives for u_1 and W_i .

Denote by *I* the ideal of $H^*(B; Z_2)$ generated by the elements W_3, W_5, \cdots , W_{2i+1} , \cdots . Then the vector space $\beta S \oplus S$ is a module over both *I* and *P*. By (2.3)

$$
\mathrm{Sq}^{i-1}W_i \in I, \quad W_i \beta W_i \in I;
$$

and $(W_i)^2$ belongs either to *I* or *P*. But it is clear that no monomial term in $u_1^2 \bar{v}$ belongs to *P*, since $\bar{v} \notin P$, and hence $u_1^2 \bar{v} \in \beta S \oplus S$. Therefore, there are unique classes $x \in \beta S$, $v \in S$ such that

$$
(3.8) \quad u_1^2 \bar{v} + v_1 W_i^2 + (Sq^{r-1}u_1)(W_i \beta W_i) + (u_1 \beta u_1)(Sq^{i-1}W_i) = x + v.
$$

Finally, the element \bar{U} is either a monomial in L or an element in T; and by induction, the same is true of U_1 . Thus, $U_1\overline{U} \in M$, by (3.1) and (3.2). Setting $U = U_1 \overline{U}$ we obtain, since $\theta(x) = 0$,

$$
\mathfrak{P}_2(u) = \rho_4(U) + \theta(v),
$$

completing the inductive step.

We are left with showing that the class v is decomposable. Suppose that $z_1 \in \beta S \oplus S$ is a decomposable monomial (i.e., z_1 has degree > 1), and write $z_1 = x_1 + y_1$ where $x_1 \in \beta S$, $y_1 \in S$. It follows fairly easily from page 411 of [11] that x_1 and y_1 are also decomposable. Since the left hand side of (3.8) is decomposable, this shows that the class *v* is too, which completes the proof of the lemma.

We use (3.5) to obtain the main result of the section.

LEMMA (3.9). Let u be any element in $S \subset H^*(B; Z_2)$. Then there is a unique *element* $v \in S$ *such that*

$$
\mathfrak{P}_2(u) = \rho_4(U) + \theta(v),
$$

where U is the integral representative for u. Moreover, if u is decomposable then 80 is V.

The uniqueness of *v* follows, as before, from (3.3). Write $u = u_1 + \cdots + u_r$, where the u_i 's are distinct monomials in *S*. By (3.5) there are classes $v_i \in S$ such that

$$
\mathfrak{P}_2(u_i) = \rho_4(U_i) + \theta(v_i),
$$

where U_i is the integral representative for u_i . Then $U = U_1 + \cdots + U_r$ is the integral representative for u . Furthermore, if u is decomposable then so is each monomial u_i —as is, by (3.5) , each element v_i .

If *u* is odd dimensional, then by (7.7) of [8], \mathfrak{B}_2 is an additive operation, and

$$
\mathfrak{P}_2(u) = \rho_4(U) + \theta(v),
$$

where $v = v_1 + \cdots + v_r \in S$, completing the proof for this case. Suppose then that *u* is even dimensional. Then

$$
\mathfrak{P}_2(u) = \sum_i \mathfrak{P}_2(u_i) + \sum_{i < j} \theta(u_i u_j) \\
= \rho_4(U) + \theta(v) + \sum_{i < j} \theta(u_i u_j).
$$

Since the u_i 's are all distinct monomials in *S*, it follows from the definition of *S* that $u_i u_j \in S(i \neq j)$. Hence

$$
\mathfrak{P}_2(u) = \rho_4(U) + \theta(\bar{v}),
$$

where $\bar{v} = v + \sum_{i < j} u_i u_j \in S$. This completes the proof of the lemma.

4. Polynomial subrings

Consider a graded anti-commutative ring A, which is finitely generated in each dimension. Denote the rational numbers by R_0 .

LEMMA (4.1) . Let $u_1, u_2, \cdots \in A$ be even dimensional elements and denote *by Uthe subring of* A *generated by the u's. Suppose that*

(1) $\mathbf{A} \otimes R_0$ *is a polynomial ring on* $u_1 \otimes 1$, $u_2 \otimes 1$, \cdots ;

(2) $U \otimes Z_p$ is a polynomial ring on $u_1 \otimes 1_p$, $u_2 \otimes 1_p$, \cdots , where $1_p =$ **1** mod *p (all primes p);*

(3) $(U \otimes Z_p) \cap (T \otimes Z_p) = 0$ *(all primes p), where T denotes the torsion ideal of* A.

Then, U is a polynomial subring of A with u_1, u_2, \cdots *as generators, and* $A = U \oplus T$ *(group direct sum).*

It is clear from (1) that *U* is a polynomial ring on u_1, u_2, \cdots ; and hence $U \cap T = 0$. Thus we need simply show that every element $a \in A$ can be written as $u + t$, where $u \in U$ and $t \in T$.

Consider the exact sequence

$$
0 \to T \xrightarrow{i} A \xrightarrow{\rho} A \otimes R_0,
$$

where i is the inclusion and ρ is the ring homomorphism given by $\rho(a) = a \otimes 1$, for $a \in A$. Using this exact sequence together with (2) and (3), one may now complete the proof of (4.1) by exactly the same argument as that used to prove (7.1) in [10]. We leave the details to the reader.

There are several applications one can make of (4.1) , but the following is the one needed for the proof of (1.7) . Let X be a topological space whose integral cohomology groups are finitely generated in each dimension. Let u_1, u_2, \cdots be even dimensional elements in $H^*(X)$ (integral coefficients) and let *U* be the subring generated by the u's. Denote by ρ_0 the cohomology homomorphism induced by the inclusion $Z \subset R_0$. We show

THEOREM (4.2). *Suppose that the cohomology groups of X have the following properties.*

(1) $H^*(X; R_0) = R_0[\rho_0(u_1), \rho_0(u_2), \cdots];$

(2) $H^*(X)$ has no p-torsion for odd primes p;

(3) $H^*(X; Z_2) = Z_2[x_1, x_2, \cdots; y_1, y_2, \cdots; z_1, z_2, \cdots],$ where $\beta x_i = y_i$, $\beta z_i = 0;$

(4) $\rho_2(U)$ is a polynomial ring with $\rho_2(u_1)$, $\rho_2(u_2)$, \cdots , as generators and $\rho_2 (\, U) \; = \; Z_2 [x_1^2 \; , \; x_2^2 \; , \; \cdots \; ; \; z_1 \; , \; z_2 \; , \; \cdots].$ *Then,*

 $H^*(X) = Z[u_1, u_2, \cdots] \oplus T$, where $2T = 0$.

Let *T* denote the torsion ideal of $H^*(X)$. We first show that $2T = 0$. In view of (2) this will be true if, and only if, Kernel $\beta = \text{Image } \rho_2$. Since one always has Image $\rho_2 \subset \text{Kernel } \beta$, we need simply show that Kernel $\beta \subset \text{Image } \rho_2$.

Recall that the coboundary β is a derivation (i.e., $\beta(uv) = (\beta u)v + u(\beta v)$). Therefore by property (3) above and Theorem 1 of [11], there is a (vector) subspace $S \subset H^*(X; Z_2)$ such that³

$$
H^*(X;Z_2) = P \oplus \beta S \oplus S,
$$

where $P = Z_2[x_1^2, x_2^2, \cdots, z_1, z_2, \cdots]$, and where

$$
Kernel \beta = P \oplus \beta S, \qquad Image \beta = \beta S.
$$

Now β is the composition $\rho_2\delta$, and therefore $\beta S = \rho_2\delta S \subset \text{Image } \rho_2$. By property (4) , $P = \rho_2(U) \subset \text{Image } \rho_2$, and consequently, Kernel $\beta = P \oplus \beta S \subset \text{Image } \rho_2$, completing the proof that $2T = 0$.

Now by (6.5) of [10], $\rho_2(T) = \text{Image } \beta = \beta S$, and hence

$$
\rho_2(U) \cap \rho_2(T) = 0.
$$

Setting $A = H^*(X)$ (integral coefficients) we will apply (4.1) to obtain (4.2). Since

$$
A\otimes R_0=H^*(X)\otimes R_0=H^*(X;R_0),
$$

 $(4.2)(1)$ implies $(4.1)(1)$. Moreover, as was remarked in the proof of (4.1) , this already shows that U is a polynomial ring on u_1, u_2, \cdots . Now for any subset $V \subset H^*(X)$ and any prime $p, \rho_p(V) \approx V \otimes Z_p$. (This is true for any space X). Therefore, $\rho_p(U) = U \otimes Z_p$, and hence condition (4.1)(2) is fulfilled—using (4.2)(2) if *p* is odd, and (4.2)(4) if $p = 2$. Since $\rho_p(T) = 0$ if p is odd, condition $(4.1)(3)$ is satisfied by (4.3) . Therefore, the conclusion of (4.2) follows from the conclusion of (4.1) .

In the next section we apply (4.2) to prove (1.7) . Other applications of (4.2) can be made to the integral cohomology rings

$$
H^*(B_{o(n)}), \qquad H^*(B_{so(n)})
$$

 $(2 \leq n \leq \infty)$, where $O(n)$ denotes the group of orthogonal $(n \times n)$ -matrices. (See Theorem A and (12.1) of [10].) Finally, an algebraic analogue of (4.2) can be used to give the structure of the Thom ring $([7])\Omega$ of orientable manifolds (see [13] and $[11; §2]$).

5. Proof of (1.2)

Suppose we have defined the elements Ψ_i that occur in (1.2). We then define the Φ 's by taking Φ_i ; ≥ 1) to be the integral representative of Ψ_{2i} . Thus, dim $\Phi_j = 4j$, $\rho_2(\Phi_j) = \Psi_{2j}^2$, and $\Phi_j \in D$, since, by hypothesis, $\Psi_{2j} \in D_2$. By (3.4) the Φ 's are given uniquely, once we specify the Ψ 's. In order to define the

³ We are taking $k = Z_2[z_1, z_2, \cdots]$ in [11], and using the identification $H^*(X; Z_2)$ = $k[x_1, x_2, \cdots; y_1, y_2, \cdots].$

W's canonically we will assume that

$$
\Psi_i\in D_2^i\cap S\subset H^i(B;Z_2)\quad (i\geq 1),
$$

where S is the subspace defined in §3.

If i is not a power of 2, set $\Psi_i = 0$, agreeing with (1.4). For i a power of two, we give a recursive definition for Ψ_i , beginning with $\Psi_1 = \Psi_2 = 0$. Suppose then that Ψ_k has been defined, where k is a power of $2 \geq 2$, and $\Psi_k \in D_2^k \cap S$ $H^k(B; Z_2)$. By (3.9) there is a unique class $\Lambda_{2k} \in D_2^{2k} \cap S \subset H^{2k}(B; Z_2)$ such that

(5.1)
$$
\mathfrak{P}_2(\Psi_k) = \rho_4(\Phi_l) + \theta(\Lambda_{2k}),
$$

where $l = k/2$. We define

$$
(5.2) \t\t\t \Psi_{2k} = \Lambda_{2k} + W_k \Psi_k + \hat{\Omega}_{2k} ,
$$

where $\hat{\Omega}_{2k} = \sum_{1 \leq i \leq l} W_{2i} W_{2k-2i}$. Clearly $\Psi_{2k} \in D_2^{2k} \cap S$. Since $\hat{\Omega}_2 = \hat{\Omega}_4 = \hat{\Omega}_8 = 0$, the first non-zero value of Ψ_{2k} is

$$
\Psi_{16} = \hat{\Omega}_{16} = W_4 W_{12} + W_6 W_{10} .
$$

Since this is a decomposable class in S_{16} , the recursion starts correctly.

Thus the Φ and Ψ -classes have been defined in (1.2), and agree with (1.8).
Recall that $\rho_2(P_i) = (W_{2i})^2$ for $i \ge 1$. Therefore, $\rho_2(\pi^* P_1) = (\pi^* W_2)^2 = 0$, and consequently there is an element $Q_1 \in H^4(\hat{B}; Z)$ such that $\pi^*P_1 = 2Q_1$. We show that $\rho_2(Q_1) = \pi^*W_4$. Now by (3.7),

$$
0 = \mathfrak{P}_2(0) = \mathfrak{P}_2(\pi^*W_2) = \rho_4(\pi^*P_1) + \theta(\pi^*W_4).
$$

Since $2\rho_4 = \theta \rho_2$, we obtain

$$
\theta(\rho_2Q_1-\pi^*W_4)\,=\,0
$$

and hence $\rho_2 Q_1 = \pi^* W_4$, since $H^3(\hat{B}; Z_2) = 0$. Therefore, the element Q_1 satisfies (1.3) , (1.5) and (1.6) . In a similar fashion one obtains an element Q_2 satisfying $(1.3)-(1.6)$. For integers i that are not a power of 2 we take (1.4) as definition, and obtain the remaining *Q's* by an induction argument on powers of 2.

Suppose then that classes Q_i , satisfying $(1.3)-(1.6)$, have been defined for all integers *j* which are powers of $2 \leq 2^r (r \geq 1)$. Set $l = 2^{r-1}$, $k = 2l = 2^r$. Thus we assume that we have a class $Q_k \in H^{4k}(\hat{B}; Z)$ such that

(5.3)
$$
\pi^* P_k = 2Q_k + Q_l^2 - \pi^* \Phi_k,
$$

$$
\rho_2 Q_k = \pi^* (W_{4k} + \Psi_{4k}).
$$

Now

$$
\begin{array}{ll} \rho_2(\pi^* P_{2k})\,=\,(\pi^* W_{4k})^2=\,(\rho_2 Q_k\,-\,\pi^* \Psi_{4k})^2 \\ [4pt] \qquad =\, \rho_2 Q_k^2\,+\,\pi^* \Psi_{4k}^2\,=\,\rho_2(Q_k^2\,-\,\pi^* \Phi_{2k}), \end{array}
$$

and therefore,

$$
\rho_2(\pi^*P_{2k}-Q_k^2+\pi^*\Phi_{2k})=0.
$$

Consequently, by exactness, there is an element $\overline{Q}_{2k} \in H^{8k}(\hat{B}; Z)$ such that

(5.4)
$$
\pi^* P_{2k} = 2\bar{Q}_{2k} + Q_k^2 - \pi^* \Phi_{2k}.
$$

Using (3.7) and (5.4) we obtain⁴

$$
\mathfrak{P}_2(\pi^* W_{4k}) = \rho_4(\pi^* P_{2k}) + \theta(\pi^* W_{8k}) + \theta(\pi^* \hat{\Omega}_{8k})
$$

= $\rho_4(Q_k^2 - \pi^* \Phi_{2k}) + \theta[\rho_2 \bar{Q}_{2k} + \pi^* W_{8k} + \pi^* \hat{\Omega}_{8k}].$

On the other hand, by (5.3) we have

$$
\mathfrak{P}_2(\pi^* W_{4k}) = \mathfrak{P}_2(\rho_2 Q_k + \pi^* \Psi_{4k})
$$

= $\mathfrak{P}_2(\rho_2 Q_k) + \mathfrak{P}_2(\pi^* \Psi_{4k}) + \theta(\rho_2 Q_k)(\pi^* \Psi_{4k}).$

By Theorem I (9) and Theorem II (ii) of [8], $\mathfrak{P}_2(\rho_2Q_k) = \rho_4(Q_k^2)$, and by (5.1),

$$
\mathfrak{P}_2(\pi^*\Psi_{4k}) = \rho_4(\pi^*\Phi_{2k}) + \theta(\pi^*\Lambda_{8k}).
$$

Furthermore,

$$
\theta(\rho_2 Q_k)(\pi^* \Psi_{4k}) = \theta[\pi^* (W_{4k} \Psi_{4k} + \Psi_{4k}^2)]
$$

= $\theta[\pi^* (W_{4k} \Psi_{4k} + \rho_2 \Phi_{2k})]$
= $\theta(\pi^* W_{4k} \Psi_{4k}) + 2\rho_4(\pi^* \Phi_{2k}).$

Therefore,

(5.6)
$$
\mathfrak{P}_2(\pi^*W_{4k}) = \rho_4(Q_k^2 + 3\pi^*\Phi_{2k}) + \theta\pi^*(\Lambda_{8k} + W_{4k}\Psi_{4k}).
$$

Comparing (5.5) and (5.6) we obtain by (5.2) ,

$$
\theta[\rho_2\bar{Q}_{2k} + \pi^*W_{8k} + \pi^*\Psi_{8k}] = 0,
$$

and hence by exactness,

$$
\rho_2 \bar{Q}_{2k} + \pi^*(W_{8k} + \Psi_{8k}) = \beta u,
$$

for some element $u \in H^{8k-1}(\hat{B}; Z_2)$. Recall that $\beta = \rho_2 \delta$, and that $2\delta = 0$. Thus, if we define

$$
Q_{2k}\,=\,\bar{Q}_{2k}\,+\,\delta u,
$$

we obtain an element $\in H^{8k}(\hat{B}; Z)$ such that by (5.4),

$$
\pi^* P_{2k} = 2Q_{2k} + Q_k^2 - \pi^* \Phi_{2k} ,
$$

and

$$
\rho_2 Q_{2k} = \pi^*(W_{8k} + \Psi_{8k}).
$$

This completes the inductive definition of the classes Q_k and hence proves ⁴ Since $\pi^*W_2 = 0$, we have $\pi^*\Omega_{8k} = \pi^*\hat{\Omega}_{8k}$.

 (1.3) through (1.6) . To prove (1.7) we apply (4.2) to the space \hat{B} , where we take the classes Q_1, Q_2, \cdots to be the u's. $(4.2)(1)$ and (2) are then fulfilled, since $K(Z_2, 1)$ has only cohomology of order 2. In order to obtain $(4.2)(3)$ we make a change of variable. For $j \geq 4$, set

$$
\hat{W}_j = \begin{cases} \pi^* W_j, & \text{if } j \text{ is not a power of 2,} \\ \pi^* (W_j + \Psi_j), & \text{if } j \text{ is a power of 2.} \end{cases}
$$

Thus,

$$
\beta \hat{W}_{2j} = \hat{W}_{2j+1}, \qquad \rho_2 Q_j = (\hat{W}_{2j})^2 \quad \text{if } j \text{ is not a power of } 2,
$$

$$
\beta \hat{W}_{2j} = 0, \qquad \rho_2 Q_l = \hat{W}_{2j} \qquad \qquad \text{if } j = 2l, \text{ where } l \text{ is a power of } 2.
$$

Since Ψ_j is decomposable, $H^*(\hat{B}; Z_2) = Z_2[\hat{W}_4, \hat{W}_6, \cdots]$, and therefore (4.3) (3) and (4) are fulfilled. Thus, (1.7) is simply (4.2) stated in terms of the Q 's.

To complete the proof of (1.2) , suppose that $\{Q_i\}$ is a second set of cohomology classes satisfying properties (1.3) – (1.6) , relative to a fixed choice of the classes Φ and Ψ . We show that $Q_i = Q'_i$, for $i \geq 1$. This is trivial if i is not a power of 2, and one readily verifies that it is so for $i = 1, 2$. Suppose we have shown that $Q_j = Q'_j$ for all integers j which are powers of $2 \leq 2^r (r \geq 1)$. As above, set $l = 2^{r-1}, k = 2l = 2^r$. We show that $Q_{2k} = Q'_{2k}$, which will complete the inductive argument.

By $(1.5), 2(Q_{2k} - Q'_{2k}) = 0$, and therefore by exactness,

$$
Q_{2k} = Q'_{2k} + \delta u,
$$

where $u \in H^{8k-1}(\hat{B}; Z_2)$. Now 2 $\delta u = 0$ and therefore $\delta u \in \hat{T}$ (see (1.7)). On the other hand, by (1.6) ,

$$
0 = \rho_2(Q_{2k} - Q'_{2k}) = \rho_2(\delta u).
$$

But ρ_2 | \hat{T} is a monomorphism, and therefore $\delta u = 0$, completing the proof of $(1.2).$

UNIVERSITY OF CALIFORNIA, BERKELEY

BIBLIOGRAPHY

- [i] M. ATIYAH AND F. HIRZEBRUCH, *Riemann-Roch theorems for differentiable manifolds,* Bull. A.M.S., **66** (1959), 276-281. •
- [2] A. BOREL, *Sur la cohomologie des espaces fibres* •••,Ann. of Math. **67** (1953), 115-207.
- [3] A. BoREL AND F. HrnzEBRUCH, *Characteristic classes and homogeneous spaces,* Amer. **J.** Math, **80** (1959), 459-538; **81** (1959), 315-382.
- [4] **R.** BoTT, *On the stable homotopy of the classical groups,* Proc. Nat. Acad. Sci. U.S.A., **43** (1957), 933-935.
- [5] F. HrnzEBRUCH, Neue topologische methoden in der algebraischen geometrie, Springer 1956.
- [6] J. MILNOR, Lectures on characteristic classes, Mimeographed notes, Princeton Univ. 1957.
- [7] R. Thom, *Quelques propriétés globales des variétés différentiables*, Comment. Math. Helv., **28** (1954), 17-86.
- [8] E. THOMAS, The generalized Pontrjagin cohomology operations \cdots , Memoir No. 27 Amer. Math. Soc., 1957,
- [9] ---, *The suspension of the generalized Pontrjagin cohomology operations*, Pac. J. Math., **9** (1959), 897-911.
- [10] ---, *On the cohomology of the real Grassman complexes* \cdots , Trans. Amer. Math. Soc., **96** (1960), 67-89.
- [11] ---, *A note on certain polynomial algebras*, Proc. Amer. Math. Soc., **11** (1960), 410-414.
- [11] \rightarrow , *I* have the torsion *Pontrjagin classes*, *ibid*, **13** (1962), 458-488.
- [13] C. T. C. WALL, *Determination of the cobordism ring,* Ann. of Math., **72** (1960), 292-311.
- [14] W. T. Wu, *On Pontrjagin classes III,* Acta Math. Sinica, **4** (1954), 323-347.
- [15] C. ZEEMAN, *A proof of the comparison theorem for spectral sequences*, Proc. Camb. Phil. Soc., **53** (1957), 57-62.