
ON THE COHOMOLOGY GROUPS OF THE CLASSIFYING SPACE FOR 
THE STABLE SPINOR GROUP 

BY EMERY THOMAS* 

1. Introduction 

Denote by SO(n)(n ~ 2) the group of (n X n) rotation matrices and let 
Spin(n) denote the universal covering group of SO(n). Thus we have the 
following exact sequence of groups, 

I-. Z2-. Spin(n) -. SO(n)-. I, 

where Z denotes the integers and Zr the integers mod r (r ~ 2). According to 
Borel, such an exact sequence of groups gives rise to a fiber space 

where in general BG denotes the classifying space for a topological group G. Now 
consider the stable groups ([14]), 

SO = U:==2 SO(n), Spin = U:=2 Spin(n). 

Since the above fibering exists for each n ~ 2, we obtain in the limit the fiber 
space 

i ~ 'ff 

K(Z2, I)._ B- B, 

where K(Z2, I) = Bz2 , B = Bspin, and B = Bso. 
Because the integral cohomology groups of K(Z2, I) are either zero or Z2, it 

is clear that B and B have isomorphic cohomology groups with rational co­
efficients and with coefficients mod p, where p is an odd prime. The purpose of 
this paper is to compute the integral and mod 2 cohomology groups of B. 

Let us recall the results for B: 

H*(B;Z 2) = Z2[W2, Ws, • • • ]; H*(B;Z) = Z[P1, P2, • • ·] EB T, where 2T = 0. 

Here Wi E H'(B;Z2) denotes the ith Stiefel-Whitney class and P; E JI4i(B;Z) 
denotes the /h Pontrjagin class.1 We shall show 

THEOREM (I.I). For each positive integer i not of the form 2r + I (r ~ 0), 
set Wt = 1r*W,. Then, H*(B;Z2) = Z2[WT, Wt, w:, · · · ]. 

For any graded, anti-commutative algebra A denote by A+ the ideal of positive 
dimensional elements. Define the decomposition ideal of A to be the ideal gener­
ated by A+·A+. In particular denote by D and D2 the decompositions ideals 

* Research supported by the Air Force Office of Scientific Research. 
1 Strictly speaking W; is characterized by the fact that when restricted to H*(B 8 ocn>i Z2) • 

(n ~ i), it becomes the i th Stiefel-Whitney class of the classifying bundle over B80 c,.,-and 
similarly for P 1. 
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for the respective algebras H* ( B ;Z) and H* ( B ;Z2). Set 

Di= D n H\B;Z), D~ = D2 n H\B;Z2) (i ~ 0). 

We shall prove 
THEOREM (1.2). There are cohomology classes {Qi}, {<I>i}, {'1i"i} (i ~ 1) with the 

following properties: 

(1.3) Qi E H4i(B,Z), <I>i E D4i c H4i(B;Z), 

( 1.4) If i is not a power of 2, then 

<I>i = 0, 

Let j = 2r, for r = 0, 1, • • • . Then 

( 1.5) 

(1.6) 

Moreover, 

1r*P2; = 2Q2i + Q; - 1r*<I>2;, 1r*P1 = 2Q1; 

p2(Q;) = 1r*(W4; + '¥4;), p2(<I>;) = ('1i"2;) 2. 

(1.7) H*(B;Z) = Z[Q1, Q2, • • ·] EB 'I', where 2T = 0. 

Furthermore, if { Q~} ( i ~ 1) is a second set of cohomology classes satisfying 
( L3 )-( 1.6) ( relative to a fixed choice of the <I>'s and the '1i"'s) then Q, ~ Q~. 

Here Pr(r ~ 2) denotes the cohomology homomorphism induced by the factor 
map Z - Zr . In Section 5 we give a specific choice for the classes <I> and'¥. The 
low: dimensional values of these classes are as follows: 

(1.8) 
<I>. = 0 for 1 :s; i :s; 7; 

'¥ i = 0 for 1 :s; i :s; 15; 

<I>s = AP6 + P3P5 ; 

'1i"rn = W4W12 + W6W10. 

Let 7/ be an SO-bundle over a complex K and suppose that 7/ is induced by a 
map f from K to B. Suppose that W2( TJ) = 0. Then, as is well-known, f may be 
factored into a composition 

g ~ 'Tr 

K -- B -- B, 

where the map g is unique up to homotopy. Thus we call 7/ a Spin bundle. Recent 
work of Atiyah, Borel, Hirzebruch and others (see, for example, [1], [3]) indicates 
the importance of these bundles. Taking the unique cohomology classes Qi 
given in (1.2) (relative to the choice for the <I>'s and '1i"'s given in §5), define 

(1.9) 

and call these cohomology classes the Spin characteristic classes of the bundle 7/· 

Let K denote the CW-complex which consists of a 1-sphere with a 2-cell 
attached by a map of degree 4. Denote by K2 the 2-fold suspension of K. From 
t,he standpoint of K 2 , the complex B may be considered an Eilenberg-MacLane 
space of type (Z,4). Pick a generator u for the group H4(K2;Z) ~ Z4. By (1.1), 
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(1.5) and' (1.6) one sees that the element Q1 generates ff(B;Z) ~ Z. Thus 
there is a map g from K2 to B such that g*Q1 = 2u. Denote by 'YJ the Spin-bundle 
over K2 corresponding to the map ?r o g. Then, 

P1(YJ) = (?r0 g)*Pi = g*(2Q1) = 4u = O; 

W4(YJ) = (1r O g)*W4 = g*(p2Q1) = P2(2u) = O; 

Q1( YJ) = g*Q1 = 2u ~ 0. 

Thus 'YJ is .a bundle whose regular characteristic classes are trivial but for which 
Q1( 'YJ) ~ 0. Using the Bott divisibility theorems one can construct an analogous 
complex K4k-2 and Spin bundle 'r/4k-2 (k ?: 1) such that 

P('YJ4k-2) = 1; W(YJ4k-2) = 1; Qk('r/4k-2) ~ 0. 

While the classes Q; are given uniquely by making a specific choice of the <l>'s 
and the w's, it would be more desirable to obtain the uniqueness by means of 
axioms which have geometric significance. As yet I have not been able to do this. 
In the axioins given for the regular characteristic classes (see [5], [6]) the behavior 
of the classes on the Whitney sum of two bundles has played an important role. 
Let 'YJ and .1 be two Spin bundles over the same base space. Then the Whitney 
sum 'YJ E9 .1 is also a Spin bundle. Using (1.5), (1.6) and the known facts about 
Pontrjagin classes ([12, (3)]) one can easily show: 

( 1.10) If k ~ 3, then Qk( YJ E9 r) = Li+i=~ Q.( YJ) .__, Qj(r). . . . .. 

Qi,,, EB r) = I:,+i=4Q,C,,,)....., Q/r) + CQ2(,,,) + Q2CrY)CQ1C,,,)....., Q1Cr>J. 

The formula for the higher dimensional Q's will be very complicated, and I do 
not know it explicitly. 

The proof of (1.1) is given in the following section while the subsequent 
sections are devoted to the proof of. (1.2). I would like to thank John Milnor 
for his helpful suggestions concerning this paper. 

2. Proof of (1.1) 

Let X be a topological space that has finitely-generated (integral) cohomology 
groups in each dimension. Taking cohomology groups with coefficients in a field 
k, we will say that H*(X) has a simple system of ge11erators (see Borel, [2]) if 
there are elements xo, X1, X2, • • • E H*(X) such that the totality of monomials 
x, 1x;2 • • • x;, (0 ~ i1 < i2 < · · · < ir, r ?: 1) forms a k-vector space basis for 
H*(X). In this case we write H*(X) = A(xo, X1, • • • ). 

Consider now a (Serre) fiber space Fi, E ~ B, where we assume for simplicity 
that the base space Bis I-connected. Recall that one then has the transgression 
operator, which is a homomorphism of degree +1 from a subgroup of H*(F) to 
a factor group of H*(B). 

LEMMA (2.1). Taking coefficients in a field k, suppose that 

H*(F) = A(xo, X1, • • • ), H*(B) = k[yo, Y1, • • ·] ® Q, 
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where Xi is transgressive (i 2::: O), Yi represents its transgression and ;Q is a.sub­
algebra of H*(B). If char k ~ 2; assume each Xi has odd dimension .. Then, 11'*:Q 
~ H*(E), where 11"* denotes the cohomology homomorphism induced by 11". 

The proof follows very easily from Theorems (13.1), (16.1) of [2] and the spec­
tral sequence cm:ppariison theorerp. of Zeeman ([15]). We leave the details to the 
reader. • , 

We apply this 2 to the fiber space K(Z 2 , 1) - B - B, given in §1. Taking 
coefficients mod 2; let xo denote a generator for H1(Z 2 , 1). Then H*(Z2, 1) 
= Z2[xo]. For r zil; define 

(, ' )' 2' s 2r-l 2 1( ) 
Xr = Xo = , q o • • • o Sq o Sq Xo , 

where Sqi denotes the Steenrod operator. Thus, 

(2.2) H*(Z2, 1) = Ll(xo, X1, • • • ). 

Consider now the. polynomial algebra H*(B) = Z2[W2, W3 , • • • J, and recall 
the formula of Wu: 

(2.3) 

Set 

S 2r- 1 S 2 S 1 ( ) Yo = W2 , y, =. q O • : • 0 q O . q W2 r 2::: 1 . 

Then by ( 2.3) and the part~n product formula, 

Yr = W2r+1 mod D2 

and therefore, 

H*(E) ;= Z2[Yo, Y1, W4, Y2, Wa, W1, • • ·J 

= Z2[Yo, Y1 , Y2 , • • • J ® Z2(W4 , Wa , W1 , • •.• J. 
(2.4) 

Now the element x 0 E H*(Z2 , 1) is transgressive (in the fibering we are 
considering) and Yo is its (unique) representative. Since the transgression 
operator commutes with the Steenrod operations, we see that each element 
x, (i 2::: 1) is transgressive and Yi represents its transgression. Therefore, (1.1) 
follows at once from (2.1), (2.2), and (2.4). 

3. The Pontrjagin square 

Recall that H*(B;Z) = Z[P1, A, · · ·] EB T. Denote by L the subset of 
Z[P 1 , P2 , • • •] which consists of those polynomials whose non-zero coefficients 
are all + 1, together with the zero polynomial. Set M = L -+ T c: H* ('B ;Z) ; 
that is, a cohomology class u E M if, and only if, u = l + t, where l EL, t E T. 
The following facts are then easily ascertained. 

2 The following proof is bas!ld on the one given by Borel for Propositions (15,. 2) and 
(15, 21) in "Sur l'homologie et la cohomologie des groupes de Lie compact connexes, Amer. Jr 
of Math., 76 (1954), pp. 273-342. 
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( 3.1) Let x and y be monomials in L. Then xy is a monomial in L. 
(3.2) Let z E Mandt E T. Then tz = zt E Tc M. If dim z = dim t, then 

z + t EM. 
(3.3) p2 IM is a monomorphism. 

We show 

LEMMA (3.4). Let u E H*(B;Z2). Then there is a unique element U E M such 
that p2 ( U) = u2. Moreover, if u is decomposable, then so is U. 

The uniqueness of the class U follows from (3.3). To show the existence 
suppose first that u is a generator for the polynomial algebra H*(B;Z2). Since 

2 2i 2 p2(Pi) = (W2i) , P2(0Sq W2i+1) = (W2i+1) , 

and since Pi E L, 0Sq2iW2i+1 E T, we have proved (3.4) for this case. (Here 
o is the Bockstein coboundary from Z2 to Z.) Suppose next that u is a monomial 
of degree > 1. Then (3.4) follows at once from (3.1), (3.2) and the fact that 
P2 is a multiplicative homomorphism. Moreover, when u is a monomial, the class 
U is then either a monomial in L or an element of T. Now let u • = Ui + · · · + Ur , 

where the u/s are distinct monomials in H*(B; Z2). Then there are elements 
U1, • • • , Ur E M such that p2( Ui) = u~, and we may number these elements 
in such a way that for some integer q ~ r, the elements U1, • • • , Uq are mo­
nomials in L and Uq+1, • • • , Ur E T. Since u1, • • • , Uq are all distinct mono­
mials it is clear that U1 + · · · + Uq is a polynomial in L. Hence, setting 
U = ( U1 + · · · + Uq) + ( Uq+1 + · · · + U;) we obtain the desired class, 
recalling that 

u2 = ( U1 + · · · + Ur ) 2 = u~ + · · · + u; . 

For any class u E H* ( B ; Z2) we define its integral representative to be the 
unique class U E M given in (3.4). Thus, if dim u = q, then dim U = 2q, and 
P2( U) = u2 • Also, if u is decomposable, then so is U. 

Define P to be the subalgebra of H*(B; Z2) which is generated by Wi, W!, 
w: , · • · , Wt, · · • . Define S to be the (vector) subspace of H* ( B; Z2) which 
has as basis the totality of monomials 

where p E P, i1 < · · · < ia , a ~ 1; j1 ~ • • • ~ jb , b ~ O; and i1 ~ j1 , if b > 0. 
Finally denote by l.l,2 the Pontrjagin square and by 0 the cohomology homo­
morphism induced by the inclusion Z2 c Z4. We show 

LEMMA (3.5). Let u be a monomial in H*(B; Z2). Then there is a unique class 
v E S such that 

%(u) = p4(U) + 0(v), 

where U is the integral representative for u. Moreover, if u is decomposable then 
so is v. 
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Recall from (11, §2] that we have a vector space splitting 

(3.6) H*(B; Z2) = P EB {3S EB S, 

where P EB {3S = Kernel (3, {3S = Image (3. Here (3 is the Bockstein coboundary 
p20. Since Kernel 0 = Image (3 = {3S, it is clear that 0 I Sis a monomorphism 
and hence the class v is unique. 

Now Wu (14], (10] has shown that 

(3.7) 
~2(W2;) = p4(P;) + 0[W4j + LO<i<i W2iW4j-2i], 

Define 

!:24; = LO<i<j W2iW4j-2i (j ~ 1), 

which clearly is an element in S. Suppose now that the monomial u, in (3.5), 
is a generator Wk(k ~ 2). Setting 

U = P;, v = w4j + n4; (if k = 2j) 

v = 0 ( if k = 2j + 1), 

we obtain the desired classes. 
We complete the proof of (3.5) by an inductive argument. Suppose that the 

lemma has been proved for monomials of degree n(n ~ 1), and let u be a mo­
nomial of degree n + 1. Then, u = u1 Wi , where u1 is a monomial of degree 
n and i ~ 2. Therefore there are classes U1 , 0 E M, and v1 , v E S such that 

Now by equation 4.5 (2) of [9], 

~2(u) = ~2(u1)%(Wi) + O[(Sq'- 1u1)(Wi.BWi) + (u1f3u1)(Sqi- 1W;)], 

where dim u1 = r > 0. Consequently, 

%(u) = p4(U10) + 0[uiv + v1W! + (Sq'- 1u1)(W;{3Wi) + (ui/3u1)(Sqi- 1W;)]. 

Here we have used the fact that 0(v1)0(v) = O; that 8(a)p4(b) == 0(ap2b) for any 
classes a E H*(B; Z2), b E H*(B; Z); and that U1 , 0 are the respective integral 
representatives for u1 and Wi. 

Denote by I the ideal of H*(B; Z2) generated by the elements W3 , W 6 , • • • , 

W2i+1 , • • • . Then the vector space {3S EB S is a module over both I and P. 
By (2.3) 

Sqi-lW; E J, W;{3W; E J; 

and (W;)2 belongs either to I or P. But it is clear that no monomial term in 
uiv belongs to P, since v (£ P, and hence uiv E (3S EB S. Therefore, there are 
unique classes x E (3S, v E S such that 

(3.8) uiv + v1W! + (Sqr--1u1)(Wif3Wi) + (u1f3u1)(Sq;-iWi) = x + v. 
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Finally, the element (j is either a monomial in Lor an element in T; and by in­
duction, the same is true of U1 . Thus, U1U E M, by (3.1) and (3.2). Setting 
U = U1Uwe obtain, since 0(x) = 0, 

~2(u) = p4(U) + 0(v), 

completing the inductive step. 
We are left with showing that the class v is decomposable. Suppose that 

z 1 E {38 EB 8 is a decomposable monomial (i.e., z1 has degree > 1), and write 
z1 = x1 + Y1 where x1 E {38, Y1 E 8. It follows fairly easily from page 411 of 
[11] that x1 and Y1 are also decomposable. Since the left hand side of (3.8) is 
decomposable, this shows that the class v is too, which completes the proof of 
the lemma. 

We use (3.5) to obtain the main result of the section. 

LEMMA (3.9). Let u be any element in 8 c H*(B; Z2). Then there is a unique 
element v E 8 such that 

%(u) = p4(U) + 0(v), 

where U is the integral representative for u. Moreover, if u is decomposable then 
80 is V. 

The uniqueness of v follows, as before, from (3.3). Write u = u1 +·· · · + u,, 
where the u.'s are distinct monomials in S. By (3.5) there are classes v.; E S 
such that 

where Ui is the integral representative for u •. Then U = U1 + · · · + U, is 
the integral representative for u. Furthermore, if u is decomposable then so is 
each monomial u.-----as is, by ( 3.5), each element Vi . 

If u is odd dimensional, then by (7.7) of [8], % is an additive operation, and 

where v = v1 + · · · + v, E S, completing the proof for this case. Suppose then 
that u is even dimensional. Then 

%(u) = Li ~2(u.) + Li<j 0(u,-ui) 

= p4(U) + 0(v) + L,<i 0(u,-u;). 

Since the u/s are all distinct monomials in S, it follows from the definition of 8 
that u,-urE S(i ~ j). Hence 

where v = v + L•<i u.u; E S. This completes the proof of the lemma. 



64 EMERY THOMAS 

4. Polynomial subrings 

Consider a graded anti-commutative ring A, which is finitely generated in 
each dimension. Denote the rational numbers by Ro . 

LEMMA ( 4.1). Let u1 , u2 , • • • E A be even dimensional elements and denote 
by Uthe subring of A generated by the u's. Suppose that 

(1) A © Ro is a polynomial ring on U1 © 1, U2 © 1, • • • ; 
(2) U © ZP is a polynomial ring on u1 © lp, u2 © lp, • • • , where lp 

1 mod p (all primes p); 
(3) ( U © ZP) n ( T © ZP) = 0 ( all primes p), where T denotes the torsion 

ideal of A. 
Then, U is a polynomial subring of A with u1 , u2 , • • • as generators, and A = U EB T 
(group direct sum). 

It is clear from ( 1) that U is a polynomial ring on u1 , ¼ , • • • ; and hence 
Un T = 0. Thus we need simply show that every element a E A can be written 
as u + t, where u E U and t E T. 

Consider the exact sequence 

i p 
0 - T - A - A © Ro, 

where i is the inclusion and p is the ring homomorphism given by p( a) = a © 1, 
for a EA. Using this exact sequence together with (2) and (3), one may now 
complete the proof of ( 4.1) by exactly the same argument as that used to prove 
(7.1) in [10]. We leave the details to the reader. 

There ~~e several applications one can make of ( 4.1), but the following is the 
one needed for the proof of ( 1. 7). Let X be a topological space whose integral 
cohomology groups are finitely generated in each dimension. Let u1 , U2 , • • • 

be even dimensional elements in H*(X) (integral coefficients) and let Ube the 
subring generated by the u's. Denote by po the cohomology homomorphism 
induced by the inclusion Z c Ro . We show 

THEOREM ( 4.2). Suppose that the cohomology groups of X have the following 
properties. 

(1) H*(X; Ro) = Ro[po(u1), po(u2), • • ·]; 
(2) H*(X) has no p-torsion for odd primes p; 
(3) H*(X;Z2) = Z2[x1,x2, ••• ;y1,Y2, ••• ;z1,z2, ···l,where{3xi = y., 

{3Zj = O; 
(4) p2(U) is a polynomial ring with p2(u1), p2(u2), ···,as generators and 

p2( U) Z2[xi , x~ , • • • ; z1 , z2 , • • • ]. 
Then, 

H*(X) = Z[u1, u2, • • ·] EB T, where 2T = 0. 

Let T denote the torsion ideal of H*(X). We first show that 2T = 0. In view 
of (2) this will be true if, and only if, Kernel {3 = Image p2. Since one always 
has Image p2 c Kernel /3, we need simply show that Kernel {3 c Image p2 . 
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Recall that the coboundary {3 is a derivation (i.e., {3(uv) = (f3u)v + u(f3v)). 
Therefore by property (3) above and Theorem 1 of [11], there is a (vector) 
subspace S c H*(X; Z2) such that8 

H*(X; Z2) = P E9 {3S E9 S, 

where P = Z2[x~, x~, • • • , Z1, z2, ···],and where 

Kernel (3 = P E9 {3S, Image /3 = {3S. 

Now {3 is the composition p20, and therefore {3S = p20S C Image p2 . By property 
( 4), P = p2 ( U) c Image p2 , and consequently, Kernel {3 = P E9 {3S c Image p2 , 
completing the proof that 2T = 0. 

Now by (6.5) of [10], p2(T) = Image {3 = {3S, and hence 

(4.3) 

Setting A = H*(X) (integral coefficients) we will apply ( 4.1) to obtain ( 4.2). 
Since 

A ® Ro = H*(X) ® Ro = H*(X; Ro), 

(4.2)(1) implies (4.1)(1). Moreover, as was remarked in the proof of (4.1), 
this already shows that U is a polynomial ring on u1 , u2 , • • • • Now for any 
subset V c H*(X) and any prime p, pp(V) ~ V ® ZP. (This is ttue for any 
space X). Therefore, pp(U) = U ® ZP, and hence condition (4.1)(2) is ful­
filled-using ( 4.2) ( 2) if p is odd, and ( 4.2) ( 4) if p = 2. Since pp( T) = 0 if 
pis odd, condition (4.1)(3) is satisfied by (4.3). Therefore, the conclusion of 
( 4.2) follows from the conclusion of ( 4.1) . 

In the next section we apply (4.2) to prove (1.7). Other applications of (4.2) 
can be made to the integral cohomology rings 

H*(Bso(n)) 

(2 ~ n ~ oo ), where O(n) denotes the group of orthogonal (n X n)-matrices. 
(See Theorem A and (12.1) of [10].) Finally, an algebraic analogue of (4.2) 
can be used to give the structure of the Thom ring ([7])Q of orientable manifolds 
( see [13] and [11; §2]). 

5. Proof of (1.2) 

Suppose we have defined the elements 'Yi that occur in (1.2). We then define 
the <T>'s by taking <T>;(j ~ 1) to be the integral representative of '112;. Thus, 
dim <I>; = 4j, P2(<T>;) = wL, and <I>; ED, since, by hypothesis, '¥2; E D2. By 
(3.4) the <T>'s are given uniquely, once we specify thew's. In order to define the 

3 We are taking k = Z2[z1 , z2 , • • •] in [11], and using the identification H*(X; Z 2) = 

k[xi , x2 , • • ·; Yi , Y2 , • • • l. 
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W's canonically we will assume that 

w, ED~ n S c H'(B; Z2) (i ~ 1), 

where S is the subspace defined in §3. 
If i is not a power of 2, set w, = 0, agreeing with (1.4). For i a power of two, 

we give a recursive definition for w,, beginning with% = '¥2 = 0. Suppose 
then that wk has been defined, where k is a power of 2 ~ 2, and wk E D~ n S c 
H\B; Z2). By (3.9) there is a unique class A2k E Dik n S c H2\B; Z2) such 
that 

(5.1) 

where l 

(5.2) 

\.l32('¥k) = p4(<1>1) + O(A2k), 

k/2. We define 

where !12k = I:1<i<I w2iw2k-2i. Clearly '¥2k E Dik n s. Since 02 = 04 = fis = 0, 
the first non-zero value of '¥2k is 

'¥15 = !115 = W4W12 + WaW10. 

Since this is a decomposable class in 816, the recursion starts correctly. 
Thus the <I> and '¥-classes have been defined in (1.2), and agree with (1.8). 

Recall that p2(P,) = (W2i)2 for i ~ 1. Therefore, p2(1r*P1) = (1r*W2)2 = 0, 
TT4 A * and consequently there is an element Q1 E n (B; Z) such that 71' P 1 = 2Q1. 

We show that p2(Q1) = 71'*W4. Now by (3.7), 

0 = \.l32(0) = \.l32(71'*W2) = p4(11'*P1) + 8(11'*W4). 

Since 2p4 = Op2 , we obtain 

O(p2Q1 - 71'*W4) = 0 

and hence p2Q1 = 71'*W4, since H3(B; Z2) = 0. Therefore, the element Q1 satis­
fies (1.3), (1.5) and (1.6). In a similar fashion one obtains an element Q2 satis­
fying (1.3)-(1.6). For integers i that are not a power of 2 we take (1.4) as 
definition, and obtain the remaining Q's by an induction argument on powers 
of 2. 

Suppose then that classes Qi, satisfying (1.3)-(1.6), have been defined for 
all integers j which are powers of 2 ~ 2'(r ~ 1). Set l = 2'-1, k = 2l = 2'. Thus 

n4k A we assume that we have a class Qk E n (B; Z) such that 

(5.3) 
71'*pk = 2Qk + Q! - 71'*<f>k, 

Now 

P2(11'*P2k) = (11'*w4k)2 = (p2Qk - 71'*w4k)2 

= p2Q: + 71'*-q;-!k = p2(Qi - 71'*<f>2k), 
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and therefore, 

p2( 1r*P2k - Q% + 1r*<I>2k) = 0. 

Consequently, by exactness, there is an element Q2k E H8\B; Z) such that 

(5.4) 

Using (3.7) and (5.4) we obtain 4 

%(1r*W41c) = p4(1r*P2k) + 0(1r*Wsk) + 0(1r*fisk) 
(5.5) 

= p4(Qf - 1r*<I>2k) + 0[p2Q2k + 1r*Wsk + 1r*fisk]­

On the other hand, by (5.3) we have 

%(1r*W41c) = \.l32(p2Qk + 1r*'¥4k) 

= \.l32(p2Qk) + l_l32(1r*'¥41c) + 0(p2Qk)(1r*'¥41c). 

By Theorem I (9) and Theorem II (ii) of [8], l.l>2(p2Qk) = p4(Qf), and by (5.1), 

\.l32(1r*'¥4k) = p4(1r*<f>2k) + 0(1r*.Ask). 

Furthermore, 

Therefore, 

0(p2Qk)(1r*w41c) = 0[1r*(W41c'¥4k + w!k)] 

= 0[1r*(W4k'¥4lc + p2<I>2k)] 

( 5.6) \.132( 1r*W 41c) = p4( QZ + 31r *<I>2k) + 01r *(.Ask + W 41c'¥41c). 

Comparing (5.5) and (5.6) we obtain by (5.2), 

0[p2Q2k + 1r*Wsk + 1r*'¥sk] = 0, 

and hence by exactness, 

p2Q2k + 1r*(Wsk + '¥sk) = (3u, 

for some element u E H8k- 1(B; Z2). Recall that (3 = p20, and that 2o = 0. Thus, 
if we define 

Q2k = Q2k + OU, 

we obtain an element E Fk(B; Z) such that by (5.4), 

1r*P2k = 2Q2k + QZ - 1r*<I>2k' 
and 

p2Q2k = 1r*(Wsk + '¥sk). 

This completes the inductive definition of the classes Qk and hence proves 



68 . EMERY THOMAS 

(1.3) through (1.6). To prove (1.7) we apply (4.2) to the space B, where we 
take the classes Q1 , Q2 , • • • to be the u's. ( 4.2 )( 1) and ( 2) are then fulfilled, 
since K(Z2, 1) has only cohomology of order 2. In order to obtain (4.2)(3) 
we make a change of variable. For j 2::: 4, set 

W. _ {1r*W;, if j is not a power of 2. 
3 - • 1r*(W; + '¥;), if j is a power of 2. 

Thus, 

t1W21 = W21+1, P2Qi = (W2;)2 if j is not a power of 2, 

tJW2; = 0, p2Qz = W2; if j = 2l, where l is a power of 2. 
• • * - - -Smee'¥; 1s decomposable, H (B; Z2) = Z2[W4, W 6 , ···],and therefore (4.3) 

(3) and (4) are fulfilled. Thus, (1.7) is simply (4.2) stated in terms of the Q's. 
To complete the proof of ( L2), suppose that { Qa is a second set of cohomology 

classes satisfying properties (1.3)-(1.6), relative to a fixed choice of the classes 
cf> and'¥. We show that Qi = Q~, for i 2::: 1. This is trivial if i is not a power of 
2, and one readily verifies that it is so for i = 1, 2. Suppose we have shown that 
Q1 = Q; for all integers j which are powers of 2 ~ 2'(r 2::: 1). As above, set 
l = 2'- 1, k = 2l = 2'. We show that Q2k = Q~k; which will complete the inductive 
argument. 

By (1.5), 2(Q2ic - Q;k) = 0, and therefore by exactness, 

Q2k = Q~k + au, 
, 8k-l A • A 

where u E H (B; Z2). Now 2 au = 0 and therefore au E T (see (1.7) ). On 
the other h3:nd, by ( 1.6), 

O = p2( Q2k - Q~k) = P2( au). 

But p2 I 'I' is a monomorphism, and therefore au 
( 1.2). 
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