ON THE COHOMOLOGY GROUPS OF THE CLASSIFYING SPACE FOR
THE STABLE SPINOR GROUP

By EmERY THOMAS*

1. Introduction

Denote by SO(n)(n > 2) the group of (n X n) rotation matrices and let
Spin(n) denote the universal covering group of SO(n). Thus we have the
following exact sequence of groups,

1 Zs — Spin(n) — SO(n) — 1,
where Z denotes the integers and Z, the integers mod r» (r > 2). According to
Borel, such an exact sequence of groups gives rise to a fiber space
322 - Bsm'n(n’) - BSO(n) ,

where in general B, denotes the classifying space for a topological group G. Now
consider the stable groups ([14]),

80 = U3, 80(n), Spin = Ui Spin(n).

Since the above fibering exists for each n > 2, we obtain in the limit the fiber
space

K(Z,,1) _*, BL)B,

where K(Z;,1) = Bz,, B = Bgpin, and B = By, .

Because the integral cohomology groups of K(Z,, 1) are either zero or Z, , it
is clear that B and B have isomorphic cohomology groups with rational co-
efficients and with coefficients mod p, where p is an odd prime. The purpose of
this paper is to compute the integral and mod 2 cohomology groups of B.

Let us recall the results for B:

H*(B;Zs) = Zo[Wy ,Ws, ---1; H(B;Z) = Z[P1,Py, ---]1 ® T, where 2T = 0.

Here W; € H'(B;Z,) denotes the +** Stiefel-Whitney class and P; € H*(B;Z)
denotes the 7™ Pontrjagin class." We shall show

TaeoreM (1.1). For each positive integer ¢ not of the form 27 + 1 (r > 0),
set W.l* = W*W/i . Then’ H*(B7Z2) — Zg[W;k, Wg" W;k’ .. ]

For any graded, anti-commutative algebra A denote by 4 . the ideal of positive
dimensional elements. Define the decomposition ideal of A to be the ideal gener-
ated by A.-A, . In particular denote by D and D. the decompositions ideals

* Research supported by the Air Force Office of Scientific Research.

1 Strictly speaking W; is characterized by the fact that when restricted to H*(Bgo@); Z2) -
(n > 1), it becomes the 5" Stiefel-Whitney class of the classifying bundle over Bgom—and
similarly for P;.
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for the respective algebras H*(B;Z) and H*(B;Z,). Set
D' = DN HYB;Z), Di = D,;N H(B;Z) (3> 0).

We shall prove
TaroreEM (1.2). There are cohomology classes {Qs}, {®, (¥ (2 > 1) with the
SJollowing properties:

(1.3) Qi € H“(B,Z),®; ¢ D* c H“(B;Z), W€ DicC H(B;Z,).
(1.4) If 7 is mot a power of 2, then
Q= =P, ®; = 0, ¥, = 0.

Letj =2, forr =0,1, --- . Then
(1.5) 7Py = 2Qs; + QF — 7%y, 7Py = 20Q;;
(1.6) p(Q;) = 7 (Waj + Tuy), p2(®;) = (W)
Moreover, _
(1.7) H*(B;Z) = Z[Q1, Qs, ---] ® T, where 2T = 0.

Furthermore, if {Qi} (s > ‘,1) 28 a second set of cohomology classes satisfying
(1.3)—(1.6) (relative to a fized choice of the ®’s and the ¥’s) then Q; = Q:

Here p,(r > 2) denotes the cohomology homomorphism induced by the factor
map Z — Z, . In Section 5 we give a specific choice for the classes ® and ¥. The
low. dimensiqnal values of these classes are as follows:

& =0 for 1<i<T; & = PyPs+ PyPs;

(1.8)
¥; =0 fOT 1L 15; Vg = WaWie + WeWyo .

Let 5 be an SO-bundle over a éomplex K and suppose that % is induced by a
map f from K to B. Suppose that W,(n) = 0. Then, as is well-known, f may be
factored into a composition

' | K9, T, B,
where the map ¢ is unique up to homotopy. Thus we call 5 a Spin bundle. Recent
work of Atiyah, Borel, Hirzebruch and others (see, for example, [1], [3]) indicates

the importance of these bundles. Taking the unique cohomology classes Q:
given in (1.2) (relative to the choice for the #’s and ¥’s given in §5), define

(1.9) L Qi(n) = ¢*Q € HYK;Z) (i>1)

and call these cohomology classes the Spin characteristic classes of the bundle 7.

Let K denote the CW-complex which consists of a 1-sphere with a 2-cell
attached by a map of degree 4. Denote by K, the 2-fold suspension of K. From
the standpoint of K; , the complex B may be considered an Eilenberg-MacLane
space of type (Z,4). Pick a generator u for the group H*(K,;Z) = Z, . By (1.1),
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(1.5) and' (1.6) one sees that the element @ generates HB;Z) ~ Z. Thus
there is-a-map g from K, to B such that g*Q, = 2u. Denote by 7 the Spin-bundle
over K, corresponding to the map = o g. Then,

Pi(n) = (w°g)*P1 = ¢"(2Q1) = 4u = 0;
Wi(n) = (70 g)*Ws = g%*(0:Q1) = pa(2u) = 0;
Ql(ﬂ)“gQ1—2u¢0

Thus 5 is.a a bundle whose regular characteristic classes are trivial but for which
Qi(n) # 0. Using the Bott divisibility theorems one c¢an construct an analogous
complex K4 o and Spin bundle 54 (K > 1) such that

P(ng—s) = 1; W(na_s) = 1; Qe(na—2) ¥ 0.

While the classes Q; are given uniquely by making a specific choice of the ®’s
and the ¥’s, it would be more desirable to obtain the uniqueness by means of
axioms which have geometric significance. As yet.I have not been able to do this.
In the axioms given for the regular characteristic classes (see [5], [6]) the behavior
of the classes on the Whitney sum of two bundles has played an important role.
Let 5 and ¢ be two Spin bundles over the same base space. Then the Whitney
sum 5 @ ¢ is also a Spin bundle. Using (1.5), (1.6) and the known facts about
Pontrjagin classes ([12, (3)]) one can easily show:

(110) Ik <3, then Qu(n © ¢) = Divit Qi(n) Qi)
Quln ® §) = Derima Qi(m) < Qs(8) + (@a(n) + @) (@uln) < Ql(m

The formula for the higher dimensional @’s will be very complicated, and I do
not know it explicitly. '

The proof of (1.1) is given in the following section while the subsequent
sections are devoted to the proof of (1.2). I would like to thank John Milnor
for his helpful suggestions concerning this paper.

2. Proof of (1.1)

Let X be a topological space that has ﬁmtely—generated (integral) cohomology
groups in each dimension. Taking cohomology groups with coeflicients in a field
k, we will say that H*(X) has a simple system of gererators (see Borel, [2]) if
there are elements 2o, 21, 22, -+ € H"(X) such that the totality of monomials
x.,lx,z 2, (0L 0 <2 < --r <4y, r 2 1) forms a k-vector space basis for
H*(X). In this case we erteH (X) = A(xo,xl, cee )

Consider now a (Serre) fiber space F LESB , where we assume for simplicity
that the. base space B is 1-connected. Recall that one then has the transgressmn
operator, which is a homomorphism of degree +1 from a subgroup of H*(F) to
a factor group of H*(B).

Lemma (2.1). Taking coeffictents in a field k, suppose that
H*(F)=A(w07x17"')7 H*(B)=k[y0;y1’]®Q)
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where x; s transgresswe (¢ > 0), y: represents its transgression and Qs a. sub-
algebm of H*(B). If char k' 2, assume each x; has odd dimension. Then, Q
~ H*(E), where =" denotes the cohomology homomorphism mduced by T

The proof follows very easily from Theorems (13.1), (16.1) of [2] and the spec-
tral sequence comparison theorem of Zeeman ([15]). We leave the details to the
reader.

We apply this® to the fiber space K(Z,,; 1) — B — B, given in §1 Taking
coefficients mod 2, let 2y .denote a generator for H'(Z,, 1). Then H*(Zy, 1)

= Zs[xz]. For r >1; deﬁne

— (2" = 80" o - o S o Sq’(a),
where Sq° denotes the Steehrbd operator. Thus,
(22) : . H*(Zz,l) =A(.’Eo,1'1, )

Consider now the polynomlal algebra H*(B) = ZjW,, W3 , -], and recall
the formula of Wu: '

(2.3) Sq1wi+1 = Wan + De<ici WilWaipae (’LZ 1)
Set i ‘. ,
= Wa,y: = S o i oS o Sq W (r > 1).
Then by (2. 3) and the Cartan product formula, .
W2r+1 mod D,

A

and therefc‘)'ré‘
H*(B) = Zz[il/o, i, Wa, 92, Wo, W, -]

(2.4)
= Zz[yo,yly?/z, ] @ Zo[Wy, W, Wv, o] _'

Now the element z, € H*(Z,, 1) is transgressive (in the ﬁbermg we are
considering) and ¥, is its (unique) representative. Since the transgression
operator commutes with:the Steenrod operations, we see that.each element
z; (¢ > 1) is transgressive and y; represents its transgression. Therefore, (1.1)
follows at once from (2:1), (2.2), and (2.4).

3. The Pontrjagin square
Recall that H*(B;Z) = Z[P1, Py; --+] ® T. Denote by L the subset of
Z[Py, Py, -:-] which consists of those polynomials whose non-zero coefficients
are all +1, together with the zero polynomial. Set M = L'+ T C H *(B;Z);
that is, a cohomology class v € M if, and only if, w = I + ¢, where [ €L tc T
The following facts are then easily ascertained.

2 The following proof: is' based on the one given by Borel for Propositions (15, 2) and
(15, 21) in ““Sur Phomologie et la cohomologie des groupes de Lie compact connexes, Amer. Jr.
of Math., 76 (1954), pp. 273-342. TR
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(8.1) Let x and y be monomsials in L. Then zy is a monomial in L.
(32)Letz € Mandt € T.Thentz = 2t € T C M. If dim z = dim ¢, then
2+ teM.
(3.3) p2'| M is a monomorphism.
We show

LemMA (3.4). Let w € H*(B;Z,). Then there is a unique element U € M such
that ps(U) = . Moreover, if w is decomposable, then so is U.

The uniqueness of the class U follows from (8.3). To show the existence
suppose first that u is a generator for the polynomial algebra H*(B;Z.). Since

p2(P3) = (W2)’, po(88q" Weir) = (Wain)?,

and since P; € L, 68q"Wy41 € T, we have proved (3.4) for this case. (Here
& is the Bockstein coboundary from Z, to Z.) Suppose next that u is a monomial
of degree > 1. Then (3.4) follows at once from (3.1), (3.2) and the fact that
p2 is a multiplicative homomorphism. Moreover, when u is a monomial, the class
U is then either a monomial in L or an element of 7. Now let u = uy + - -+ =+ u,,
where the u/s are distinct monomials in H*(B; Z;). Then there are elements
Uy, -+, U, € M such that p(U;) = u}, and we may number these elements
in such a way that for some integer ¢ = r, the elements U, , ---, U, are mo-
nomials in L and Ugyy, -++, U, € T. Since u;, - -+ , u, are all distinet mono-
mials it is clear that U, + --- 4+ U, is a polynomial in L. Hence, setting
U= U+ -+ U) + (Uga + -+ + U;) we obtain the desired class,
recalling that

= (m+ -+ w) =+ o+l

For any class u € H*(B; Z,) we define its ¢ntegral representative to be the
unique class U € M given in (3.4). Thus, if dim 4 = ¢, then dlm U = 2¢, and
p2(U) = 4% Also, if u is decomposable then so is U.

Define P to be the subalgebra of H*(B; Z,) which is generated by W3, Wi,
Wi, -, Was, - . Define S to be the (vector) subspace of H*(B; Z,) which
has as basis the totality of monomials

PWas -+ WaWajiaa -+ Wajpn,

wherep €E Py < ++- < 4,a21l; 1< - <H,b>0;andz; <j1,if b > 0.
Finally denote by P. the Pontrjagin square and by 6 the cohomology homo-
morphism induced by the inclusion Z, C Z,. We show

LemuMa (3.5). Let u be a monomial in H*(B; Zy). Then there is a unique class
v € S such that

Bo(u) = ps(U) + 6(v),

where U s the integral representative for u. Moreover, if u s decomposable then
80 18 .
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Recall from [11, §2] that we have a vector space splitting
(3.6) H*(B;Z;) =P ®B8S ® 8§,

where P @ 3S = Kernel 8, 88 = Image 8. Here 8 is the Bockstein coboundary
p26. Since Kernel § = Image 8 = 88, it is clear that 6 | S is a monomorphism

and hence the class v is unique.

Now Wu [14], [10] has shown that
(3 7) SB2(Wr2i) = P4(Pj) + 0[W4j + Zki<j WziWu-—zi], ‘
. . SB2(W'2i+1) = 94(3Sq2jW2i+1); for 7> 1.

Define
Qi = D ocici WoiWajas (5 2> 1),
which clearly is an element in S. Suppose now that the monomial u, in (3. 5),
is a generator Wi(k > 2). Setting
U=Pj, T)=W4j+ﬂ4j (lfk=2j)
U=88¢"Wn, v=0 (ifk=2+1),
we obtain the desired classes.

We complete the proof of (3.5) by an inductive argument. Suppose that the
lemma has been proved for monomials of degree n(n > 1), and let. u be a mo-
nomial of degree n + 1. Then, u = wW;, where w is a monomial of degree
n and ¢ > 2. Therefore there are classes Uy, U € M, and v, # € S such that

o Balw) = pu(Th) 4 0(w),  Bo(W) = pu(T) + 6(5).
Now by equation 4.5 (2) of [9],

PBo(u) = PBo(ur) Po(W:) + 0[(Squr) (WW:) + (wiua) (Sq™ W3],
where dim %; = r > 0. Consequently,

Po(u) = pa(ULU) + 6[uiv + oW: 4 (8q ) (WW) + (wiBur) (Sq W)
Here we have used the fact that 8(v;)0(%) = 0; that (a)ps(b) = 0(apsd) for any
classesa € H*(B; Z,),b € H*(B; Z); and that Uy , U are the respective integral
representatives for u; and W, .

Denote by I the ideal of H *(B ; Z») generated by the elements W3, Wy, - -+,
Waig1, -+ . Then the vector space 8S @ S is a module over both I and P.
By (2.3)

SqT'W, eI, WBW; € I;

and (W;)? belongs either to I or P. But it is clear that no monomial term in
u3p belongs to P, since # ¢ P, and hence uis € BS @ 8. Therefore, there are
unique classes z € B8, » € S such that .

(3.8) uiv + nW; + (Sq'_lul)(WgﬁW) + (wBu)(SqW,) = = + v.
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Finally, the element U is either a monomial in L or an element in T'; and by in-
duction, the same is true of U;. Thus, UU € M, by (3.1) and (3.2). Setting
U = U,U we obtain, since 8(z) = 0,

Pa(u) = pa(U) + 0(v),

completing the inductive step.

We are left with showing that the class v is decomposable. Suppose that
z € BS @ 8 is a decomposable monomial (i.e., z has degree > 1), and write
21 = 21 + y1 where x; € 8S, 11 € S. It follows fairly easily from page 411 of
[11] that 2; and y; are also decomposable. Since the left hand side of (3.8) is
decomposable, this shows that the class v is too, which completes the proof of
the lemma.

We use (3.5) to obtain the main result of the section.

LemMa (3.9). Let u be any element in S C H*(B; Z,). Then there is a unique
element v € S such that

Po(u) = pa(U) + 6(v),

where U 1is the tntegral representative for w. Moreover, if w is decomposable then
80 18 V.

The uniqueness of v follows, as before, from (3.3). Write u = w; + -+ + wr,
where the u;’s are distinct monomials in S. By (3.5) there are classes v; € S
such that

Ba(us) = pa(Us) + 0(v2),

where U; is the integral representative for w;. Then U = U; + .-+ + U, is
the integral representative for w. Furthermore, if « is decomposable then so is
each monomial u.—as is, by (3.5), each element v; .

If u is odd dimensional, then by (7.7) of [8], P: is an additive operation, and

Po(u) = pa(U) + 6(v),

where v = v, + --- + v, € S, completing the proof for this case. Suppose then
that u is even dimensional. Then

Po(uw) = Di Balus) + 2oici O(usu;)
= p(U) + 0(v) + D ici 0(uiuj).

Since the u,’s are all distinct monomials in S, it follows from the definition of S
that uu; € S(< # 7). Hence

‘ Po(u) = pa(U) + 6(9),
where = v + D _icj usu; € S. This completes the proof of the lemma.
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4. Polynomial subrings

Consider a graded anti-commutative ring A, which is finitely generated in
each dimension. Denote the rational numbers by R, .

Lemva (4.1). Let w1, uz, -+ € A be even dimensional elements and denote

by U the subring of A generated by the w’s. Suppose that

(1) A ® Ry s a polynomial ring on uy @ 1, ue @ 1, -+ ;

(2) U @ Z, s a polynomial ring on uy @ 1,, us @ 1p, -, where 1, =
1 mod p (all primes p);

B) (U Z,) N (T ® Z,) = 0 (all primes p), where T denotes the torsion
tdeal of A.
Then, U s a polynomial subring of A with uy,us, - - - as generators,and A = U & T
(group direct sum).

It is clear from (1) that U is a polynomial ring on w;, 42, - - - ; and hence
UN T = 0. Thus we need simply show that every element @ € A can be written
asu + ¢, where w € Uandi e T.

Consider the exact sequence

0T34 ,40R,,

where 7 is the inclusion and p is the ring homomorphism given by p(a) = a ® 1,
for a € A. Using this exact sequence together with (2) and (3), one may now
complete the proof of (4.1) by exactly the same argument as that used to prove
'(7.1) in [10]. We leave the details to the reader.

There are several applications one can make of (4.1), but the following is the -
one needed for the proof of (1.7). Let X be a topological space whose integral
cohomology groups are finitely generated in each dimension. Let wi, %2, « -
be even dimensional elements in H*(X) (integral coefficients) and let U be the
subring generated by the w’s. Denote by py the cohomology homomorphism
induced by the inclusion Z C R, . We show

TaEOREM (4.2). Suppose that the cohomology groups of X have the following
properties. .
(1) H*(X; Ro) = Rulpo(wr), po(u2), - - -1;
(2) H*(X) has no p-torsion for odd primes p;

(3) H*(X;Z2) = Zulwa, %2y »++ 5Y1, Y2, "+ 521, 22, * -], where B = ys,
Bz; = 0;

(4) p2(U) s a polynomial ring with px(u1), pe(us), - - - , as generators and
p2(U) = Zz[xil),xg, e, 2, ]
Then, :

H*X) = Ziuy, us, --+] ® T, where 2T = 0.

Let T denote the torsion ideal of H*(X). We first show that 2T = 0. In view
-of (2) this will be true if, and only if, Kernel 3 = Image p. . Since one always
has Image p; C Kernel 8, we need simply show that Kernel 8 € Image p; .
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Recall that the coboundary 8 is a derivation (i.e., B(uv) = (Bu)v + u(Bv)).
Therefore by property (3) above and Theorem 1 of [11], there is a (vector)
subspace S © H*(X; Z,) such that®

H*X;Z,) =P ®BS ® 8,
where P = ZJat , a3, -+, 2,2, -], and where
- Kernel 3 = P & 88, Image 8 = B8S.

Now g is the composition ps6, and therefore BS = p.68 < Image ps . By property
(4), P = po(U) < Image p2 , and consequently, Kernel 3 = P @ S C Image p2,
completing the proof that 27 = 0.

Now by (6.5) of [10], p2(T) = Image 8 = 8S, and hence

(4.3)  p(U) N p(T) = 0.

Setting 4 = H*(X) (integfal coefficients) we will apply (4.1) to obtain (4.2).
Since

A ® Ry = HY(X) ® Ry = H*(X; Ry),

(4.2)(1) implies (4.1)(1). Moreover, as was remarked in the proof of (4.1),
this already shows that U is a polynomial ring on %;, %z, * -+ . Now for any
subset V. € H*(X) and any prime p, po(V) &~ V ® Z,. (This is true for any
space X ). Therefore, p,(U) = U ® Z,, and hence condition (4.1)(2) is ful-
filled—using (4.2)(2) if p is odd, and (4.2)(4) if p = 2. Since p,(T) = 0 if
p is odd, condition (4.1)(3) is satisfied by (4.3). Therefore, the conclusion of
(4.2) follows from the conclusion of (4.1).

In the next section we apply (4.2) to prove (1.7). Other applications of (4.2)
can be made to the integral cohomology rings

H*(Bow),  H*(Bsowm)

(2 < n £ =), where O(n) denotes the group of orthogonal (n X n)-matrices.
(See Theorem A and (12.1) of [10].) Finally, an algebraic analogue of (4.2)
can be used to give the structure of the Thom ring ([7]) of orientable manifolds
(see [13] and [11; §2]).

5. Proof of (1.2)

Suppose we have defined the elements ¥; that occur in (1.2). We then define
the ®’s by taking ®;(j > 1) to be the integral representative of ¥,;. Thus,
dim P, = 4:], pz(q)j) = \Ifij , and P; € D, since, by hypothesis, ‘I’2j € D,. By
(3.4) the &’s are given uniquely, once we specify the ¥’s. In order to define the

3We are taking k = Z[z;, 22, ---] in [11], and using the identification H*(X; Z;) =
k[xly T2, 5 Y1, Y2, ']
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¥’s canonically we will assume that
v, €DiN ScC H(B;Z,) (i >1),

where S is the subspace defined in §3.

If 7 is not a power of 2, set ¥; = 0, agreeing with (1.4). For 7 a power of two,
we give a recursive definition for ¥, , beginning with ¥; = ¥, = 0. Suppose
then that ¥; has been defined, where % is a power of 2 > 2, and ¥, € D¥N S ©
H*(B; Z,). By (3.9) there is a unique class Ay, € D N 8 < H*(B; Z,) such
that

(5.1) Po(¥r) = pa(®1) + 0(A),
where I = k/2. We define
(5.2) Vor, = Asi + Wil + Qo

where Q2k = Zl<i<l W2iW2k_2i . Clearly ‘I’zk E D;k ﬂ S Since Qz = Q4 = Qs = O,
the first non-zero value of ¥y, is

Vg = Qi = WaWie + WeWy.

Since this is a decomposable class in Sis , the recursion starts correctly.

Thus the ® and ¥-classes have been defined in (1.2), and agree with (1.8).
Recall that ps(P;) = (Wa;)® for ¢ > 1. Therefore, po(7"P1) = (W) = 0,
and consequently there is an element @, € H*(B; Z) such that =*P; = 2Q;.
We show that ps(Q1) = =" Ws. Now by (3.7),

0 = PB2(0) = Po(x*W2) = pa(x"P1) + 6(x*Wy).
Since 2ps = 6pz , We obtain
0(p2Q — ‘II‘*W4) =0

and hence psQ, = 7 W, since H*(B; Zs) = 0. Therefore, the element Q; satis-
fies (1.3), (1.5) and (1.6). In a similar fashion one obtains an element @, satis-
fying (1.3)—(1.6). For integers ¢ that are not a power of 2 we take (1.4) as
definition, and obtain the remaining @’s by an induction argument on powers
of 2.

Suppose then that classes Q;, satisfying (1.3)—(1.6), have been defined for
all integers j which are powers of 2 < 2'(r > 1).Setl = 2", k = 2] = 2". Thus
we assume that we have a class Q, € H*(B; Z) such that

‘ll’*Pk = 20, + Q% - 7r*€I>k,
(5.3) "
p@r = (Wa + ¥u).

Now

(W*W4k)2 = (pe@r — 'lr*\Ihuc)2
= pQi + TV = pa(QF — TDBy),

p2(w*Pa)
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and therefore, _
po(7*Poy — Qi + 7'®y) = 0.

Consequently, by exactness, there is an element Qu € H¥(B; Z) such that
(5.4) 7Py = 2Qu + Qf — 77y, .
Using (3.7) and (5.4) we obtain*
Po(r* W) = pa(n*Pa) + 0(x" W) + 0(x*0ss)

= pu(Qk — TBx) + 0[pQu + T W + 7" 0u].
On the other hand, by (5.3) we have

Po(7 W) = Bo(e@e + 7°Ta)

= Pol(pQr) + PBo(m"Tu) + 6(p2Q) (7" Tur).
By Theorem I (9) and Theorem I (ii) of [8], Ba(p:Qr) = pa(QF), and by (5.1),
Po(mCu) = pa(m®u) + 0(w*Ast).

(5.5)

Furthermore,
0(peQe) (v ¥w) = Ol (Wauks + ¥is)]
= flr" (Wuls + pBor)]
= 0(7" Wals) + 204(7*Bs).
Therefore,
(5.6) Po(r* Wa) = pa( Qi + 37 @) + 07" (Aar + Warlia).

Comparing (5.5) and (5.6) we obtain by (5.2),

0l02Qu -+ 7 Wa -+ 77¥g] = 0,
and hence by exactness,

pQu + (W + ¥) = Bu,

for some element w € H* (B; Z,). Recall that 8 = ps8, and that 26 = 0. Thus,
if we define

Qn = Qu + bu,
we obtain an element € H*(B; Z) such that by (5.4),

TPy = 2Qu + Qi — 7By,
and
poQer, = W*(Wsk + Wg).

This completes the inductive definition of the classes @ and hence proves

4 Since #*Wa= 0, we have 7*Qg = a*Qg.
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(1.3) through (1.6). To prove (1.7) we apply (4.2) to the space B, where we
take the classes Q1, @, -+ to be the w’s. (4.2)(1) and (2) are then fulfilled,
since K(Z,, 1) has only cohomology of order 2. In order to obtain (4.2)(3)
we make a change of variable. For j > 4, set

W,- _ {r:W,-,' 1f le not a power of 2.
x (W; + ¥;), ifjis a power of 2.
Thus, .
ﬁWz,- = sz+1, ‘ p2Q; = (W2j)2 if j is not a power of 2,
BWz} =0, | p2Q = sz if 7 = 2l, where [ is a power of 2.

Since ¥; is decomposable, H*(B; Z,) = ZyW., Ws, --- ], and therefore (4.3)
(3) and (4) are fulfilled. Thus, (1.7) is simply (4.2) stated in terms of the @’s.

To complete the proof of (1.2), suppose that {Q;} is a second set of cohomology
classes satisfying properties (1.3)—(1.6), relative to a fixed choice of the classes
® and ¥. We show that Q; = Q; , for ¢ > 1. This is trivial if ¢ is not a power of
2, and one readily verifies that it is so for ¢ = 1, 2. Suppose we have shown that
Q; = Q; for all integers j which are powers of 2 < 27(r > 1). As above, set
1=2""k =2l = 2". We show that Qx = Qz; ; which will complete the inductive
argument.

By (1.5), 2(Qa — Q) = 0, and therefore by exactness,

sz = Qu + ou,

where u € Hﬂk'l(B Z:). Now 2 su = 0 and therefore su € T (see (1.7)). On
the other hand by (1.6), .

0 = po( Qo — Q2k) = pa(du).

But p; | 7' is a monomorphism, and therefore éu = 0, complégtmg the proof of
(1.2).
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