THE CHARACTERIZATION OF MOORE-POSTNIKOV INVARIANTS

BY JEAN-PIERRE MEYER*

1. Introduction

In his application of Moore-Postnikov systems to the obstruction theory of fibre spaces, Hermann ([1], [2]) states and uses a theorem which gives two conditions characterizing the first non-vanishing k-invariant of a Moore-Postnikov system under certain assumptions. This theorem (4.1 of [1]), as stated there, is not quite correct. The purpose of this note is to present a correct version of Hermann's theorem and to give a counter-example to the original statement. Actually the theorem we state below is also a generalization of Hermann's theorem for it applies to any k-invariant, not merely the first non-vanishing one.

2. Characterizing Moore-Postnikov invariants

We follow Hermann's notation throughout this note. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibre space with simply-connected base and fibre, $0 < n(1) < n(2) < \cdots$ the dimensions in which F has non-zero homotopy groups, $A_j = \pi_{n(j)}(F)$. A Moore-Postnikov system of this fibre-space is a sequence of fibre maps $f_i: E_i \to E_{i-1}$ with fibre Eilenberg-MacLane spaces of type $(A_i, n(i))$, maps $h_i: E \to E_i$ such that $E_0 = B$, $h_0 = p$, $h_{i-1} = f_i h_i$, and h_i induces isomorphisms of homotopy groups in dimensions $\leq n(i)$. Let g_i be $h_i | F$. We may assume that $h_{\alpha-1}: E \to E_{\alpha-1}(\alpha \geq 1)$ is a fibre map with fibre F' and we have the commutative diagram

Ì

where $F_{\alpha-1} = \text{image } (h_{\alpha-1}i)$, and $i_{\alpha-1}$, $j_{\alpha-1}$, $l_{\alpha-1}$ are inclusions. It is easily verified that the $F_{\alpha-1}$ are part of a Postnikov system for F.

The fibre F' is $n(\alpha) - 1$ -connected and the spaces $E_{\alpha-1}$, $F_{\alpha-1}$ are 1-connected. Thus Serre's exact sequence and its naturality yield the following exact ladder (the coefficient group A_{α} will be systematically omitted from the notation):

* This work was partially supported by the U. S. Army Research Office, Grant 31-124-G119.

If b^{α} denotes the basic cohomology class of $H^{n(\alpha)}(F')$, and τ_h , τ_g the appropriate transgressions, then the α th k-invariants of p and of F are defined, respectively, by

$$k^{\alpha} = -\tau_h(b^{\alpha})$$
$$k^{\alpha}(F) = -\tau_g(b^{\alpha})$$

From these definitions and the above diagram, it immediately follows that

- (1) $h_{\alpha-1}^{*}(k^{\alpha}) = 0$
- (2) $i_{\alpha-1}^{*}(k^{\alpha}) = k^{\alpha}(F)$

We wish to study under which conditions, equations (1) and (2) characterize the k-invariant k^{α} .

LEMMA (2.1). Let $k \in H^{n(\alpha)+1}(E_{\alpha-1})$. Then k satisfies (1) and (2) if and only if there is an element $b \in H^{n(\alpha)}(F')$ such that $k = -\tau_h(b)$ and $b - b^{\alpha} \in \text{image } l_{\alpha-1}^*$.

Proof. Suppose k satisfies (1) and (2). Then $h_{\alpha-1}^{*}(k) = 0$, so by exactness, there is an element $b \in H^{n(\alpha)}(F')$ such that $k = -\tau_h(b)$. Now, $-\tau_g(b^{\alpha}) = k^{\alpha}(F) = i_{\alpha-1}^{*}(k) = -i_{\alpha-1}^{*}\tau_h(b) = -\tau_g(b)$, so $\tau_g(b-b^{\alpha}) = 0$ and $b-b_{\alpha} \in i_{\alpha-1}^{*}$.

Conversely, if $k = -\tau_h(b)$ and $b - b^{\alpha} \in \text{image } l_{\alpha-1}^*$, then $h_{\alpha-1}^*(k) = 0$ and $i_{\alpha-1}^*(k) = -i_{\alpha-1}^*\tau_h(b) = -\tau_g(b) = -\tau_g(b^{\alpha}) = k^{\alpha}(F)$.

LEMMA (2.2). Let $k \in H^{n(\alpha)+1}(E_{\alpha-1})$. Then $k = k^{\alpha}$ if and only if there is an element $b \in H^{n(\alpha)}(F')$ such that $k = -\tau_h(b)$ and $b - b^{\alpha} \in \text{image } j_{\alpha-1}^*$.

Proof. If $k = -\tau_h(b)$, then $k = k^{\alpha}$ if and only if $\tau_h(b) = \tau_h(b^{\alpha})$, i.e., $b - b^{\alpha} \in \text{kernel } \tau_h = \text{image } j_{\alpha-1}^*$, and the lemma is proved.

Combining lemmas (2.1) and (2.2) we obtain the following proposition.

PROPOSITION (2.3). Let $k \in H^{n(\alpha)+1}(E_{\alpha-1})$. Then $h_{\alpha-1}^{*}(k) = 0$, $i_{\alpha-1}^{*}(k) = k^{\alpha}(F)$ imply $k = k^{\alpha}$ if and only if image $l_{\alpha-1}^{*} \subset \operatorname{image} j_{\alpha-1}^{*}$.

COROLLARY (2.4). Let $k \in H^{n(\alpha)+1}(E_{\alpha-1})$. Then $h_{\alpha-1}^*(k) = 0$, $i_{\alpha-1}^*(k) = k^{\alpha}(F)$ imply $k = k^{\alpha}$ if and only if kernel $i_{\alpha-1}^* \cap \text{image } \tau_h = (0)$.

Proof. Since $j_{\alpha-1}^* = l_{\alpha-1}^*i^*$, image $j_{\alpha-1}^* \subset$ image $l_{\alpha-1}^*$. Thus the second statement in proposition (2.3) is equivalent to image $l_{\alpha-1}^* =$ image $j_{\alpha-1}^*$. By exactness, this is equivalent to kernel τ_h = kernel τ_g . But kernel τ_g = kernel $i_{\alpha-1}^*\tau_h$ and the corollary follows.

In order to state our theorem concisely, we need the following definition.

DEFINITION (2.5). Let X be a space; G, an Abelian group; and $x \in H^*(X; G)$. Then An(x), the annihilator of x is the subset of Hom (G, G) consisting of all homorphisms $\theta: G \to G$ such that $\theta_{\#}(x) = 0$, where $\theta_{\#}$ is the coefficient homomorphism induced by θ . THEOREM (2.6). Conditions (1) and (2) characterize k^{α} if and only if $An(k^{\alpha}) = An(k^{\alpha}(F))$.

Proof. Let $x \in \text{kernel } i_{\alpha-1}^* \cap \text{image } \tau_h$. Then $x = -\tau_h(b)$. Since $H^{n(\alpha)}(F'; A_{\alpha}) \approx \text{Hom } (H_{n(\alpha)}(F'); A_{\alpha}) \approx \text{Hom } (A_{\alpha}, A_{\alpha})$, it is readily seen that b is of the form $\theta_{\$}(b^{\alpha})$ for some $\theta \in \text{Hom } (A_{\alpha}, A_{\alpha})$ —in fact θ is precisely the homomorphism corresponding to b under the above isomorphisms. Then $x = -\tau_h \theta_{\$}(b^{\alpha}) = -\theta_{\$}\tau_h(b^{\alpha}) = \theta_{\$}k^{\alpha}$ and $0 = i_{\alpha-1}^*(x) = i_{\alpha-1}^*(\theta_{\$}k^{\alpha}) = \theta_{\$}i_{\alpha-1}^*(k^{\alpha}) = \theta_{\$}k^{\alpha}(F)$. The theorem now follows from (2.4).

The above theorem may be used to compute k^{α} from the knowledge of $k^{\alpha}(F)$, provided properties of k^{α} are eliminated from the statement " $An(k^{\alpha}) = An(k^{\alpha}(F))$." Since $An(k^{\alpha}) \subset An(k^{\alpha}(F))$, the equality automatically holds in the special case where $An(k^{\alpha}(F)) = (0)$. This is true, as is easily verified under the conditions stated in the following two corollaries.

COROLLARY (2.7). If A_{α} is the field of rational numbers Q or Z_p (p prime) and $k^{\alpha}(F) \neq 0$, then (1) and (2) characterize k^{α} .

COROLLARY (2.8). If A_{α} and $H^{n(\alpha)+1}(F_{\alpha-1}; A_{\alpha})$ are free and $k^{\alpha}(F) \neq 0$, then (1) and (2) characterize k^{α} .

These corollaries cover the cases where Hermann applied his theorem.

3. An example

The example described below shows that $An(k^{\alpha})$ may be different from $An(k^{\alpha}(F))$ if $A_{\alpha} \approx Z$ and no further restrictions are made. Thus the statement of Theorem 4.1 of [1] must be modified.

Let $B = S^7$, the 7-sphere, and $\pi_i(F) \neq 0$ only for i = 4, 6, when $\pi_4(F) \approx Z_2$, $\pi_6(F) \approx Z$. Suppose the first k-invariant vanishes so that $E_1 = S^7 \times K(Z_2, 4)$, $k^1(F)$ is the non-zero element of $H^7(Z_2, 4; Z) \approx Z_2$, $\delta^* \operatorname{Sq}^2 b^4$, and $k^1 \in H^7(E_1; Z) \approx H^7(S^7; Z) + H^7(Z_2, 4; Z) \approx Z + Z_2$ is the element $s^7 + \delta^* \operatorname{Sq}^2 b^4$, where s^7 is a generator of $H^7(S^7; Z)$. It is easily seen that all elements $ns^7 + \delta^* \operatorname{Sq}^2 b^4$, n odd, satisfy conditions (1) and (2). This reflects the fact that $An(k^1) = (0)$ while $An(k^1(F)) = 2Z$.

THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MARYLAND

References

R. HERMANN, Secondary obstructions for fibre spaces, A. M. S. Bull., 65(1959), 5–8.
Obstruction theory for fibre spaces, Ill. J. Math., 4(1960), 9–27.