ON THE DUAL STIEFEL-WHITNEY CLASSES OF A MANIFOLD

By W. S. Massey Anp F. P. PETERSON!

1. Introduction

This paper is devoted to proving theorems which assert that for certain values
of n and k, the (n — k)-dimensional dual Stiefel-Whitney class of an n-dimen-
sional manifold is always zero. The precise statements of the theorems are given
in §2, and their proofs are given in §§3-8.

This work was originally motivated by the fact that one of the most potent
methods of proving that a manifold can not be imbedded in certain dimensional
Euclidean spaces is to prove that certain dual Stiefel-Whitney classes of the
manifold are non-zero. Thus it is natural to investigate the limitations of this
method of proving non-imbeddability.

Later on, this work was given additional stimulus by the remarkable results
of A. Haefliger and M. Hirsch on the imbeddability of differentiable manifolds
in Euclidean space. Haefliger has proved in [7] that a compact n-dimensional
(k — 1)-connected manifold can always be imbedded differentiably in Euclidean
space of dimension 2n 4 1 — k, provided 2k < n. In case 2(k + 1) < n Haefliger
and Hirsch have shown® that the first “obstruction” to imbedding the manifold
in (2n — k)-dimensional Huclidean space is the dual Stiefel-Whitney class in
dimension n — k& (taken with mod 2 coefficients for (n — k) even, and integral
or twisted integral coefficients for (n — k) odd). The vanishing of this ob-
struction is both necessary and sufficient for the desired imbedding. Thus our
results show that for certain values of n and k, this desired imbedding is always
possible. Among the more striking results obtained by combining our theorems
with those of Haefliger and Hirsch are the following:

(1) A compact, orientable differentiable n-manifold can be imbedded differ-
entiably in Fuclidean (2n — 1)-space (with the possible exception of the case
n = 4).

(2) If n is not a power of 2, then any compact, non-orientable n-manifold can
be differentiably tmbedded in Euclidean (2n — 1)-space (with the possible excep-
tion of the case n = 3).

(3) A compact, stimply connected n-manifold can be differentiably imbedded in
Buclidean (2n — 2)-space provided n is not of the form 2% or 2° 4+ 1 (with the
possible exception of the case n = 6).

Independently of the imbedding problem, it seems worthwhile to study the
Stiefel-Whitney classes of a differentiable manifold, since they are among the
most important algebraic invariants of such a manifold. The results in this

1 During the preparation of this paper, the first named author was partially supported
by N.S.F. Grant G-18995; the second named author is an Alfred P. Sloan Fellow and was
partially supported by the U.S. Army Research Office.

2 This result is unpublished as yet.
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paper are a small contribution towara the difficult problem of determining all
the relations which must be satisfied by the Stiefel-Whitney classes of a manifold.
(Added in proof: This problem has recently been solved by E. H. Brown, Jr. and
F. P. Peterson.) ‘

The results in this paper include the results on dual Stiefel-Whitney classes
contained in two earlier notes by one of the authors ([1] and [2]). This paper is
written so that a knowledge of these earlier papers is not necessary. It should
be pointed out, however, that the results on ordinary Stiefel-Whitney classes of
a manifold given in [1] and [2] are not contained in the present paper.

2. Statement of Results

First we list the notations which are fixed throughout the paper.

M"—compact, connected, differentiable, n-dimensional manifold.

w; , W—mod 2 ¢-dimensional Stiefel-Whitney class and dual Stiefel-Whitney
class of M™ respectively.

W, We—integral i-dimensional Stiefel-Whitney class and dual Stiefel-
Whitney class of M™ respectively. These are defined for 7 odd and ¢ > 2 only;
if M" is non-orientable, they have twisted integer coefficients, while if M™ is
orientable, they are cohomology classes with ordinary integer coefficients. They
may be defined by the following equations:

Woirn = 6(wa),
‘ Wi = 8(12:),
where § denotes the appropriate Bockstein coboundary operator (see §7 for more
details).

Let a(n) denote the number of occurrences of the digit “one” when the
integer n is written in its dyadic expansion.

TuroremMm 1. For any M",
(i) Wus = 0for 0 = k < a(n), and
(i) Was=0for 0 £k < a(n) andn — k odd.

This theorem is “best possible” in the following sense: For any integer n > 1
there exists a manifold M" such that w,_; # 0 for a(n) < k = n. The manifold
M™ is a product of real projective spaces chosen as follows. Write the integer n
as a sum of a(n) distinet powers of 2:

n=2“1—l—2“2+--~,a1<a2<---.
Let X; denote a real projective space of dimension 2%, 1 < 7 £ «(n). Then set
M" =X X - X Xogw . |

It is readily proved that w,_; # 0 for a(n) < k < n for this choice of M™". Since
Wa_s is the reduction mod 2 of W, , it follows that W,_, # O fora(n) <k <n
and n — k odd. This example was pointed out to the authors by Rolph Schwar-
zenberger.
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In the above example, /" is non-orientable. For orientable manifolds, further
results can be obtained.

TaEOREM I1. Let M™ be a compact, connected, orientable n-dimensional manifold
such that W, #= 0. Then there exist non-negative integers ag, or, * - , o Which
satisfy the following conditions:

(a’) Zi @y = k:

(b) Zi 2](1]‘ =n,

(¢) a1 is even, and

(d) If ae = O, then the first non-zero o; and tts immediate successor, oy,
must be even.

CoroLLARY 1. For any orientable n-manifold, 0,1 = 0.
This is the case £ = 1 of the theorem.

CororLARY 2. If M™ is an orientable n-manifold n > 2, such that W,_, # 0,
then n has the formn = 27+ 1,7 > 1,orn = 277, r > 0.

Proof: Take k = 2 in Theorem II. The only way to satisfy conditions (a)—(d)
forn > 2is to choose a9y = o, = 1, ¢; = Ofor 0 < 7 < r, r > 1, or to choose
ar = 2,a; = 0forj < r,r > 0.In the first case,n = 2" + 1,7 > 1, and in the
second case n = 27, r > 0. Q.E.D.

It should be noted that both these cases can actually occur: Complex pro-
jective space of real dimension n = 2 illustrates the second case, and ‘the
manifold which Dold ([5]) denotes by P(1,2"), r > 1, illustrates the first case.

The arguments in the foregoing paragraphs can be construed as proving that
Theorem IT is “best possible” for £ = 1 or 2. On the other hand, it is not known
at present whether or not this theorem is a best possible result for k£ = 3. How-
ever, the following examples® show that Theorem IT is “best possible” for k = 3
whenn < 11: M® = P5(C) X S, M* = P(1,2) X §, M’ = P,(C) X 8, and
M"™ = P(1,4) X 8" The cases n = 7 or 11 are covered by Theorem II (¢) and
n = 8 is covered by Theorem II (d). The first unsolved case when &t = 3 is

n = 12,

TueoreEM II1. Let M"™ be a compact, connected, orientable manifold such that
War #= 0, n — k odd. Then there exist non-negative integers oo , oz, ** , oy Such
that

(a) Z,-a,-. =k+ 1,

(b) 22 2%a; = n,

(e) a1 is even,

(d) If ap = 0, then the first non-zero o; and its immediate successor must be

even,
(&)1 <a <k 1.

3 In these examples, P,(C) denotes complex projective space of 2n real dimensions, and
P(m, n) is the Dold manifold ([5]).
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Note that conditions (b), (¢), and (d) are the same in both Theorems II and

II1.
The cases k¥ = 1 and k = 2 are of special interest:

CoRrOLLARY 1. If M™ is an orientable n-manifold, n even, then W,_y = 0.

CoROLLARY 2. If M" is an orientable n-manifold, n odd, such that W,_, = 0,
then n is of the formn = 2 + 1,7 > 0.

An example of such a manifold is the Dold manifold P(1, 27).

3. Relationship between Steenrod Squares and Dual
Stiefel-Whitney Classes

Notation: Sq = Zizo Sq’ denotes the “total” Steenrod square.

It is known that Sq is an automorphism of the mod 2 cohomology ring
H*(X, Z,) of any space X such that H%(X, Z;) = 0 for all sufficiently large ¢
(for a proof, see §1 of Dold, [6]). Following Thom, we will denote the inverse
automorphism by

Q=1+Q¢+Q@+Q+ -,
where Q° denotes the component of degree 7 of ¢. The relation
Q o Sq = Sq o Q =1
implies that for any positive integer £,
. D iriet @8q° = 0.
The cohomology operations Q° may be readily computed from these equations;
for example,
Ql = Sql; Q2 = qu;
Q' =8d%q, @ =8¢+ 8q’8d,
Q5 — Sq4Sq1, QG — Sq4sq2.

LeMMA 1. Let M™ be a compact, connected n-manifold. Then for any x € H*(M™,
Z2):

Ty, = Q" ().

Proof: In the proof of this lemma, we will use the following notation:

W = sz w; (total Stiefel-Whitney class of M™).

W = Zigo w; (total dual Stiefel-Whitney class). Note that @ = w ™.

w € H,(M", Z,) (fundamental homology class of M™). If y is any element of
the cohomology ring H*(M", Z) (it need not be a homogeneous element), then
we will denote by (y, u) the element of Z, obtained by evaluating the component
of y of degree n on the homology class u. With this convention, the Wu class

([11])
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U=14+U+Ux+ ---
of the manifold M™ is defined by the requirement that the relation
(@-U,p) = Sa =,
shall be true for any & € H*(M", Z,). Tt is known (see [11]) that
w = Sq U.
Hence

w = 8q(U™)

l

w
and for any z € H*(M", Zs),
2 = z-w = z-SqU"
Sq(Qz)-SqU™
Sql(Qz)-U].

[

Therefore
(@ ®, ) = Sal(Qz) U], w)
= (U-[(Qz)- U], w)
= (Qu, u),

and from the fact that (-, u) = (Qr, u), the statement of the lemma follows
immediately. Q.E.D.

Remarks: (1) The authors are indebted to John Milnor for this simplified
proof of this lemma. (2) Milnor has shown that the Steenrod algebra (mod 2)
admits a canonical involution, and that the image of Sq under this involution is
precisely the operator €. This fact will not figure in this paper, however.

4. Iterated Steenrod Squares

If I = (41,4, -+, i,) is any sequence of non-negative integers, then Sq’

denotes the iterated Steenrod square Sq”Sq™ - - - 8q*". The sequence I is said to
be admissible if 71 = 24y, % = 243 -+« , 4,1 = 21, . By use of the Adem relations,
any iterated Steenrod square may be expressed as a sum of admissible iterated
Steenrod squares. Following Serre ([9]), it is convenient to associate with any
admissible sequence I = (4, %2, -+, 4,) the sequence (a:, :++, @) of non-
negative integers defined by

o1 = ?:1 —_ 21:2,
oy = 2.2 - 27:3
(1) : :
Qpl = U1 — 211‘

o = 1y .
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Clearly, the sequence (az, *--, o) uniquely determines the sequence
(1, -+, ). The degree of the sequence I, n(I), is
n(I) =d+ 6+ - + i,
and the excess of the admissible sequence I, e(1), is
e(I) =art+ ot - + a.
The following relationship involving n(I) and e(I) may be easily verified:
(2) n(l) + e(I) = 21;.

LemMa 2. If Sq 48 an admissible iterated Steenrod square and x is any mod 2
cohomology class such that degree x < e(I), then Sq'z = 0.

This follows easily from the fact that Sqy = 0 if degree y < k.

Next, we will consider the cohomology class Sq’z, where I is an admissible
sequence, and z is a mod 2 cohomology class of degree ¢. We may as well assume
that e(I) = ¢ in view of Lemma 2. In this case, it is convenient to define

(3) a=qg—e(l); le,ao+ar+ - +a =4¢q
Then
degree (Sq'z) = n(I) + ¢
= 24 — e(I) + ¢ (by equation (2))

(4) .

=25 +

=2 4+ 2 a1+ o+ 20+
since 41 = 2", + 20,1 + -+ + a1, as may be seen from equations (1).

Lemma 3. Using the above notation, assume that ¢y = a1 = -+ = a; 1 = 0
(7 > 0). Then
Sa'z = [Sq’a)",

where

J = (iH-l ) z‘J'-H! y T 7’T>
The proof is made by repeated application of the fact that Sq*y = 3 if degree
y = k.
5. Proof of Part of Theorem I

Lemma 4. Let M" be a compact, connected n-manifold. If b, 7 0, then there
exist non-negative integers ay , g, * -+, a, such that Z,~ a; =k and ZJ- 2’a; = n.

Proof: By the Poincaré Duality Theorem (mod 2), there exists an
x € H'(M", Z,) such that
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X Wp—p & 0.

By Lemma 1,
Q" *(z) # 0.

Now Q™" may be expressed as a sum of admissible iterated Steenrod squares;
hence there exists an admissible iterated Steenrod square, Sq’, of degree n — k
such that '

Sqf(z) = 0.

By Lemma 2 we know that e(I) = k. If, now, we write down the analogue of
equation (4) for the degree of Sq’z we obtain precisely the conclusions of this
lemma. Q.E.D.

The part of Theorem I concerned with the mod 2 dual Stiefel-Whitney classes
is essentially the contrapositive form of the statement of this lemma. To see
this, observe that for any positive integers n and £, there exist non-negative
integers ag, o1, ---, o such that Y, a; = kand Y 2%; = nif and only if
n=zkz aln).

6. Proof of Theorem II

Recall that a compact, connected n-manifold M™ is orientable if and only if
the homomorphism Sq': H*(M", Z;) — H"(M", Zs) is zero (this follows from
the known structure of H*(M", Z) and the fact that Sq' = p o § in the notation
of §7). As a consequence, if M" is orientable and 7 is an odd integer, the homo-
morphism Sq':H" "(M", Zs) — H™(M", Z,) is zero; for, Sq° = Sq'Sq”™ if ¢ is
odd. This is the only property of orientable manifolds which we use to prove
Theorems IT and III.

One starts the proof of Theorem IT like that of Lemma 4. If M" is compact,
connected, orientable, and @, # 0, then, exactly as in the proof of Lemma 4,
one concludes that there exists an # € H*(M", Z,) and an admissible sequence
I = (4,4, -, of degree n — k such that Sq’z > 0. Conditions (a) and
(b) of Theorem II are exactly the conclusion of Lemma 4, and the proof is the
same. However, since M" is orientable, we can conclude that ¢, is even by the
remark in the preceding paragraph. Since ey = 41 — 275, this implies that a; is
even, which is part (c¢) of the conclusion.

Next we will prove part (d) of the conclusion. If ¢y = a1 = -+ = aj1 = 0,
then by Lemma 3,

Sq’(z) = [Sq’z]”
= [Sq"2",

where J = (%441, %542, -+, %) and K = (4;, 441, -, ). Note also that it
follows from equations (1) that a;;1 = 741 and o; = 7; mod 2. If ; is odd, then
so is 7;, and
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Sa'z = 8q'{Sq" @[Sq el )

where K’ = (4; — 1, ¢j41, -+, %), since Sq" is a derivation of H*(M", Z,).
If ;41 is odd, then so is 7;41, and

Sq'z = 8q'{Sq” e[Sq 2" ).

where J' = (4j1 — 1,%42, '+, %). In either case, this contradicts the fact that
Sq'z # 0.
This completes the proof of Theorem II.

7. Some Consequences of the Poincaré Duality Theorem

For any manifold M we will denote by T9(M, Z) and T,(M, Z) the torsion
subgroups of H*(M, Z) and H,(M, Z) respectively. Also, for any prime number
p, let

(S)  HYM,z) P H' (M, Z) L BY(M, Z,) —— BN, Z)
denote the exact sequence associated with the coefficient sequence

p

0 —»>2Z-——-2—->2Z,—0.

Tirst, we will consider the case of a compact, connected n-manifold M™ which
is orgentable. The cup product

HY(M", Z,) X H™Y(M", Z,) - H*(M", Z,) = Z,

is a bilinear. form, which, according to the Poincaré Duality Theorem, is non-
degenerate.

LeMMA 5. For any integer q, p|T" *(M", Z)] %s the annshilator of o[H*(M", Z)].

Apparently this lemma is well known; see, for example, Hopf and Hirzebruch
[8], page 169. A proof can be easily given along the lines of the proof of Lemma 7
below.

Next, we will consider the analogous statements for a compact, connected
non-ortentable manifold M". For this purpose, it is necessary to consider homology
and cohomology groups with twisted integer coefficients (denoted by Z) or
twisted integer mod p coefficients (denoted by Z,). These are local coefficient
systems in M" such that an orientation reversing element of the fundamental
group operates on Z on Z, by change of sign. Note that the homology and
cohomology groups with coefficients Z, or Z, are vector spaces over the field
Z,, and that for p = 2, the local coefficient system Z, is trivial, i.e. Z, = Z; as
coefficient system. We assume the reader is familiar with the Poincaré Duality
Theorem for compact, non-orientable manifolds using twisted coefficients as out-
lined, for example, in [3], exposé 20; [4], exposé X VII; or Steenrod ([10]), §§14-15.
Recall that the eup product of two twisted cohomology classes is an ordinary
(non-twisted) cohomology class, while the product of a twisted and an ordinary
cohomology class is a cohomology class with twisted coefficients. A similar remark
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applies to the cap product of a homology and a ecohomology class, one or both of
which may have twisted coefficients.
The following lemma is probably well-known, but to the best of the authors’
knowledge does not occur in the literature.
LemMA 6. The cup product
o HYM", Z,) X H"Y(M",Z,) — H"(M", Z,) = Z,
s a non-degenerate bilinear form. ‘

Proof: Let p € H,(M", Z) denote the fundamental homology class of M".
According to the Poincaré Duality Theorem for non-orientable manifolds, the

homomorphisms
HYM", Zp) — Huo(M", Zy),
HY(M", Z,) — Huo(M", Zp),
defined by + —» x ~uforxz € H'(M", Z,) or H*(M", Z,) are isomorphisms onto.

' Now consider the following diagram:

HY(M™, Z,) X H"(M", Z,) —s H"(M", Z,)

£ Js Js
HYM, Z,) X Ho(M", Z,) 2 Ho(M", Z,)

Here arrows nos. 1 and 2 denote the cup product and cap product respectively,
arrow no. 3 denotes the identity map, and arrows nos. 4 and 5 denote cup prod-
ucts with the fundamental class u. The fact that this diagram is commutative
follows from the well known “‘associative” law,

U~@~p) = @) ~u

Since the vertical arrows are all isomorphisms onto, and the bilinear form de-
noted by arrow no. 2 is well known to be non-degenerate for any connected
finite simplicial complex, it follows that the bilinear form denoted by arrow no. 1
is also non-degenerate. Q.E.D.

For the statement of the next lemma, we will use the following notation: The
torsion subgroups of H*(M", Z), and H,(M", Z) will be denoted by T*(M", Z),
and T,(M", Z) respectively; the exact coefficient sequence

p

0>Z———>Z—>Z,—0,

gives rise to a corresponding exact sequence in the cohomology of M™:

14 4
(8" HYM™,z) —P H(M®, Z) —P—s HY(M", Z,) s B, Z).
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Lemma 7. With respect to the bilinear form of Lemma 6, the subspaces erthogonal
to p[HY(M", Z)] € HY(M", Z,) and p'[H"*(M", Z)] < H"(M", Z,) are
1T (M™, Z)] and p[T*(M", Z)], respectively.

Proof: Since p and p’ commute with cup products (ie., (pu) < (p'v) =
o (u <) foru € H*(M", Z) and v € H"*(M", Z)) and H*(M", Z) is infinite
cyelic, it is clear that o' [T %(M™, Z)] is contained in the subspace orthogonal to
plHY(M", Z)] and that o[T*(M", Z)] is contained in the subspace orthogonal to
P IH"4(M", Z)]. To complete the proof, one computes the dimension of these
subspaces and shows that they have the correct dimensions for orthogonal sub-
spaces. Let
by = rank H'(M", Z),
b, = rank H'(M", Z),
¢; = number of cyclic summands in the p-primary component of 7°( M " Z),

¢; = number of eyclic summands in the p-primary component of 7°(M™, Z).

Then b; = b,_., since H" *(M", Z) ~ H «{(M", Z) by the Poincaré Duality
theorem, and H;(M", Z) has the same rank as H*(M", Z) for any finite simplicial
complex. Similarly, ¢; = cn_i+1'., since T (M™, Z) ~ T:1(M", Z) by Poincaré
duality and T,_«(M", Z) ~ T*(M", Z) for any finite polyhedron.
Consideration of the exact sequence (S’) shows that the rank of the vector
space H'(M, Z,) over the field Z, is by + ¢4 + Cet1 = bueg + Cnqst’ + Coeg
which is also the rank of H" (M, Z,) over Z, .
One also easily determines the following:

rank {pH*(M, Z)} = by + ¢4,
rank {o’H* (M, Z)} = bag + Caq,
rank {pT'(M, Z)} = ¢, = Cogrt, 2and
rank {p T (M, Z)} = Coqg = Cqi1.
From these statements the lemma follows.
We will now apply these results in the case p = 2.

LemMa 8. For any compact, connected n-manifold M", orientable or non-orien-

table, Wa—r = 0 if and only if
Wpp1 -2 =0
for any = € o[T*(M", Z)].
Proof: If M™ is orientable,
Wi = 6(Wni);

while if M™ is non-orientable,
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Wn—k = 6,(wn—k—1)~
Thus Wa_i = 0 if and only if 4, 4_; belongs to
pH A, 2)) o TN 7)),

respectively; by Lemmas 5 and 7, this is equivalent to w.—;— annihilating
[T*™(M", Z)] in either the orientable or non-orientable case. Q.E.D.

CoroLLARY. For any compact, connected n-manifold M™, orientable or non-
orientable, Wo_i, = 0 if and only if @ *(x) = 0 for any = € p[T*(M", Z)].
Proof: Use Lemma 1.
8. Proof of the Last Part of Theorem I and of Theorem III
-First, one proves the following assertion:

Lemma 9. Let M " be a compact connected manifold, orientable or non-orientable,
such that Wo_ # 0 (n — k odd). Then there exist non-negative integers o , o ,
, ay such that o, > 1, Y ;a; = k + 1, and Y ; 2%a; = n.

Proof: Tt follows from the corollary to Lemma 8 that there exists an element
z € p[T*™(M", Z)] and an admissible sequence I = (4, 45, - , 4,) of degree
n — k — 1 such that

Sq’(z) = 0.

From this it follows that 7, > 1, since Sq'z = 0 because z is the reduction mod 2
of an integral cohomology class. Also, ¢(I) < k -+ 1 by Lemma 2. If now one
applies the analog of equation (4) in this situation, the desired conclusion is
obtained (note that a, = 7,). Q.E.D.

Lana 10. Let n and k be posttive integers such that k < n and n — k i3 odd. Then
the following two conditions on the pair [n, k] are equivalent:

(a) There exist_non-negative integers ao, ar, -+, a (r > 0) such
that Z]‘ aj = k and 22]0(]' = n.
(b) There exist non-negative integers Bo, B, -+ , B (s > 0) such that 8, > 1,

2iBi=k+1,and 32;2°8; = n.

 Proof: First we prove that (b) implies (a). Given 8o, 81, -, B: satisfying
condition (b), define @; = B;for0 =7 = s — 1, a; = B — 2, aspn = 1. Then
the integers ao, a1, * -+ , as+ satisfy condition (a).

Next, we prove that (a) implies (b). Assume ao, - -, @, are given satisfying
condition (a): Without loss of generality, we may assume «, > 0, for this can
always be achieved by a suitable change of notation. There are now three cases
to consider.

Case 1:a, = 1. Thenchooses=r— 1, =ajfor0=j=<r—208.4=
OQr_2 _I_ 2 Br = 0.

Case 2: o, = 2. It is easily seen that the hypothesis that n» — & is odd implies
that there exists an index ¢ such that 0 < ¢ < rand «; > 0. Define ;1 = a1 + 2,
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B: = a; — 1, and B; = «; for all other values of j, 0 < 7 < r. (This is the only
place where the hypothesis that n — & is odd is used). : o

Case 3:a, > 2. Choose s =7, B = asfor0 = j = r — 2,31 = vy + 2,
B =a — 1. QE.D.

By use of Lemma 10, we see that the conclusion of Lemma 9 is equivalent to
the conclusion of Lemma 4. This sufficies for the proof of the part of Theorem I
concerning integral Stiefel-Whitney classes.

The proof of Theorem IIT bears the same relation to Lemma 9 that the proof
of Theorem II bears to Lemma 4. The details of the proof of conclusions (a),
(b), (e), and (d) of Theorem III are completely analogous to the proof of the
corresponding conclusions of Theorem II. There is no point in repeating these
details here; the reader can easily work them out himself. ‘

Only conclusion (e) involves anything new. The fact that a, > 1 is proved in
Lemma 9. It remains to prove that o, < k + 1. If o, = k + 1, then ag = oy =

. = o,y = Osince ) a; = k + 1. Now apply Lemma 3 with j = r; the result
is

Sq'z = ¥ € H"(M", Z,),

since J = (0) in this case. However, z is the reduction mod 2 of an integral
cohomology class of finite order; i.e.,

z = p(y)
where y € T'f“(M " Z). Therefore

9r

" = p(y");

but ¥ = 0 since H*(M", Z) is an infinite cyclic group and y is a torsion element.
This contradicts the fact that Sq’z = 0.
This completes the proof of Theorem III.

Yare University, New Haven, CONNECTICUT
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