ON TORSIONFREE, TORSION AND PRIMARY SPECTRA

By Danier M. Kan?

1. Introduction

In this note we will show that the following two theorems on abelian groups

have analogues for spectra:
I. Every abelian group is an extension of its torsion subgroup by a torsion-

free group.
II. Every (abelian) torsion group is the direct sum of its primary com-

ponents.
The paper is written in semisimplicial language and we shall freely use the re-

sults on semisimplicial spectra of [3].
2. The group hom (X, Y)

With every two spectra X and Y we will associate an abelian group hom
(X, Y)) whose elements are, roughly speaking, the homotopy classes of the maps
of X into Y.

DerinttioNn 2.1. Let X, ¥ € 8 and let G denote the set of all maps
X — FY € 8. Then G' may be turned into a group by defining (ab)e = (as) (bo)
forall e, b € @ and o € X. The subset H C @ consisting of the maps which are
homotopic to the constant map. (¢ — * for all ¢ € X) is readily verified to be a
normal subgroup, and we thus may define

hom (X, Y) = G/H.

As, fora,b € G,wehave a ~ b if and only if ab™" € H,the elements of hom (X, Y)
are exactly the homotopy classes of maps X — FY € 8p. Moreover if Y € $pg,
then ([3], 5.3 and 9.2) the map fY : Y — FY induces a one-to-one correspondence
between the elements of hom (X, Y) and the homotopy classes of maps

Any twomapsv: X —» X, w:Y - Y ¢ 8p induce a homomorphism hom
(v, w) : hom (X, ¥) — hom (X', ¥') and the function hom (,) so defined clearly
is a functor contravariant in the first variable and covariant in the second.

Ezxample 2.2. Let X € 8 and let S denote the spectrum which has a simplex
¥ of degree ¢ as its only non-degenerate simplex. Then it is easily seen that the
function which assigns to every map a : §? — FX the simplex ¥ € FX induces
an isomorphism,

hom (8% X) ~ . X.

1 This research was sponsored by U.S. Army Research Office (Durham).
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ProposITION 2.3. Let A, X € 8p; let B < A be a subspectrum; let AN\ B be the
spectrum obtained from A by identifying every simplex of B with the appropriate
base point; and let j : B — A be the inclusion and p : A — AN\ B the identification
map. Then the following sequence s exact: .

hom (AN B, X) PP %) o4, xy _hom(Gyix) | hom(B, X).

Proof. This follows at once from the homotopy extension theorem for spectra
which is proved just as the one for set complexes ([2]).

ProposiTioN 2.4. If v: X —» X' is a weak homotopy equivalence and Y € $p,
then hom (v, iy) s an isomorphism.

Proof. The proposition is clearly true if » is a homotopy equivalence. Hence
it sufficies to consider the case v = fX : X — FX. That hom (fX, ¢y) is an epi-
morphism follows from the fact that for every map a : X — FY there is a (unique)
homomorphism o’ : FX — FY such that o’ (fX) = a. Moreover, for any map
a” 1 FX — FY with a”(fX) = a, we have (Fa”)(FfX) = Fa = (Fa')(FfX).
This implies Fa” ~~ Fa' and hence a” ~ a; i.e., hom (fX, ¢y) is also a mono-
morphism.

Prorosrrion 2.5. hom (X, Y) ¢s abelian for all X, Y € 8p.

Proof. The two projections X V X — X induces homomorphisms hom (X, V) —
hom (X V X, Y) and hence a homomorphism j : hom (X, Y) X hom (X, V) —
hom (X V X, Y) which is clearly an isomorphism. By the argument of the
proof of 5.3 of [3], one shows that the inclusion map X Vv X - X X X
is a weak homotopy equivalence. Hence (2.4) it induces an isomorphism
k:hom (X X X,Y) > hom (X V X, 7). Finally, if d : hom (X X X, ¥Y) —
hom (X, Y) is the map induced by the diagonal map X — X X X, then a simple
computation yields that the composite homomorphism,

dk™% : hom (X, ¥) X hom (X, ¥) — hom (X, Y),

is such that d& (e, 1) = a = dk (1, &) for all € hom (X, Y).
Hence hom (X, V) is abelian.

3. Homotopy extensions

DeriNrioN 3.1. Let V, W, X € 8pz. Then X is said to be a homotopy exten-
sion of V by W if there exists a fibre map ([4], §3) a : X’ — W such that (i) V
is the fibre of @ and (ii) X’ has the same homotopy type as X.

Ezxample 3.2. Letb : X — Y € Spzwith ¥ € Speand denote by ¢b the spectrum
of which a simplex of degree ¢ is any pair (o, 7) with ¢ € X, 7 € AY ([4],
§2) and bo = dor; its faces and degeneracies are given by di(o, 7) = (diwo, di7)
and s;(o, 7) = (s;0, s;7) for all <. Then X 4s a homotopy extension of ¢b by Y.
This can be seen as follows. Let ¢ : X X A Y — Y be the map given by ¢(o, 7) =
(bo) (8r) ™" then a simple calculation yields that ¢ is a fibre map. Clearly ¢b
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is its fibre and the contractibility of A Y ([4], §2) implies that X and X X AY
have the same homotopy type.

4. Classes of spectra

With every collection of abelian groups we will associate a class of spectra.

DerintTioN 4.1. Call a spectrum findte if it has only a finite number of non-
degenerate simplices. If C is-a collection of abelian groups, then a spectrum X
will be called a C-spectrum if hom (W, X) € C for all finite W. Soin this sense we
can talk of torsion spectra, torsionfree spectra, primary spectra, divisible spectra,
ete.

An immediate consequence of 2.2 is
ProrositioN 4.2. If X is a C-spectrum, then w,.X € C for all q.
The converse of this proposition need not be true. In fact

ProrosiTioN 4.3. A spectrum X s torstonfree if and only if w,X is torsionfree
and dwistble for all q.

Proof. Suppose X is torsionfree. Let A be a spectrum with only three nonde-
generate simplices «, 8 and v with degrée o = ¢ — 1,dy8 = dojy = afor0 = j <n
and d,8 = *, dyy = % otherwise and let B C A be the subspectrum generated by
a and v. Then clearly the map A — 8% given by 8 — %, v — ¥ and the map
ANB — 8% given by f — ¥ are weak homotopy equivalences (and therefore
(2.2 and 2.4) hom (A4, X) and hom (A\ B, X) are isomorphic to =,X) and the
map induced by the projection 4 — A\ B is “multiplication by n.” The exactness
(2.3) of the sequence hom (AN\ B, X) — hom (4, X) — hom (B, X) then implies
that hom (B, X) contains a subgroup isomorphic to r,X ® Z,. Ashom (B, X)
is torsionfree, this means that =,.X ® Z, = O for all n; i.e., 7,X is divisible.

The converse is an immediate consequence of

ProrosiTioN 4.4. Let C be a class of abelian groups in the sense of Serre ([5]).
Then X s a C-spectrum if and only if 7,X € C for all q.

Proof. If W € 8 has only one non-degenerate simplex, then (2.2)
hom (W, X) € C. Now supposeit has already been proved that hom (W, X) € ¢
if W has less than n non-degenerate simplices. If V' € $p has n non-degenerate
simplices, let W < V be a subspectrum with n — 1 non-degenerate simplices.
The exactness of the sequence (2.3) hom (V\W, X) — hom (V, X) —
hom (W, X) then clearly implies that hom (V, X) € C.

b. The torsionfree part of a spectrum

With every spectrum in 8pz we shall now associate (in a natural manner)
a torsionfree spectrum, called its torsionfree part. First we define
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DrrintTiON 5.1. If G denotes the category of groups, then a covariant functor
® : 8p, G — Spe may be defined as follows. For X € $pand B € G, (X ® B)(y
is the group with

(i) a generator ¢ ® B for every ¢ € X, and 8 € B,

(ii) a relation * ® 8 = xforall 8 € B,

(iii) a relation (¢ ® B)(c ® B) = (¢ ® BF) for every ¢ € X
and B8, B¢ B. The operators in X ® B are given by the formulas

di(c ® B) = div ® B, si(c ® B) = s;0 ® B, forall 7.

Similarly for maps w: X — Y € 8pand a: B — € € G the homomorphism
w®a:X ®B—>Y ® (Cisthe one givenbye ® §— we ® aB foralle € X
and 8 € B.

Ezxzample 5.2. Let Z denote the additive group of the integers and for every
X € 8pand ¢ € X identify ¢ ® 1 with Fo € FX. Then the functor ®Z : $p — 8ps
clearly coincides with the functor F.

DermviTion 5.3. Let @ denote the additive group of the rationals, For X € 8pg
the spectrum X ® @ will be called the torsionfree part of X and we shall denote
byj: X — X ® @ the map given by ¢ — ¢ ® 1 for all ¢ € X. Then we have

ProposiTioN 5.4. Let X € 8pr. Then X ® Q s torsionfree. In fact, for all ¢,
(X ®Q) =7 X®Q and (rjla=a®1 foral o€ mX.
Proof. For any abelian group 4, 4 ® Q is the direct limit of the sequence

A—2—>A—3—>---—n—>A ”+1,

where n denotes ‘“multiplication by n.” Similarly X ® @ is the direct limit of
the sequence

x X FX=X®Z x®2 iz ®n X ez ix ® (n+ 1)
Clearly m,(ix ® n)a = nafor all @ € 7,(X ® Z). The proposition now follows
from the fact that the homotopy groups commute with direct limits.

CoROLLARY 5.5. A spectrum X € 8pg is lorsionfree if and only if it has the
same homotopy type as its torsionfree part.

COROLLARY 5.6. If two spectra X, Y € Spx have the same homotopy type, then so
do their torsionfree parts.

Remark 5.7. A different way of obtaining the torsionfree part of a spectrum is
due to E. H. Brown, Jr. It uses his representability theorem for generalized co-
homology theories ([1]). If Y is a spectrum, H the corresponding cohomology
theory, H, the cohomology theory obtained from H by tensoring with @ and
Y a spectrum corresponding with Hg , then (up to homotopy) Y is the torsion
free part of Y.
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6. The torsion part of a spectrum

With every spectrum X € 8$pr we associate (in a natural manner) a torsion
spectrum, called its torsion part. Then X is a homotopy extension of its torsion
part by its torsionfree part.

Dermirion 6.1. Let X € Spr. Then the torsion part of X is the spectrum
TX = ¢j where ¢pisasin §8andj: X — X ® @ as in $§5. Example 3.2 implies

ProrosiTioN 6.2. Every spectrum in Spx is a homotopy extension of its torsion
part by ts torsionfree part.

ProrositioN 6.3. Let X € Spr. Then TX 4s a torsion spectrum. In fact there
18 a split exact sequence

0> 711X ® Q/7Z — 7, TX — Tor (v, X, Q/Z) — 0.

Proof. Combination of the exact homotopy sequence ([4], §3) of the fibre map
XX ANX ® Q) > X ® Qof 3.2 yields the desired short exact sequence. That it
splits follows from the fact that /Z and hence 7,1 X ® Q/7Z is divisible.

CoROLLARY 6.4. A spectrum X € $pg is a torsion spectrum if and only of it has
the same homotopy type as its torsion part.

CoroLLARY 6.5. If two spectra X, Y € 8py have the same homotopy type, then
s0 do their torsion parts.

Also

ProPosITION 6.6. Let V, W, X € 8pg be such that X is a homotopy extension of
V by W and let V be a torsion spectrum and W a torsionfree one. Then V has the
same homotopy type as TX and W the same as X ® Q.

Proof. Leta: X' — W € $pzrbeasin3.1. By 54, a ® : X' ®Q-W®Q
induces an isomorphism of all homotopy groups; by 5.6., X ® Q and X' ® @
have the same homotopy type and, by 5.5, so do W and W ® Q. Hence W and
X ® @ have the same homotopy type.

Now let b: W — X' ® @ bea homotopy equivalence such that ba ~ j : X' —
X ®Qletd: X' > X X A(X'® Q) be given by ¢ — (o, *) forall ¢ € X',
andlet c: X' X A(X' ® Q) > X' ® Qbeasin3.2. Then cd = j. As ¢ is a fibre
map, the homotopy lifting theorem for spectra (which is proved just as the one
for set complexes [2]) yields a map d' : X' — X’ X A(X ® Q) such that
¢d’ = ba. As b and d’ are homotopy equivalences, so is the restriction d’/V : V —
TX' and hence (6.5) ¥ and TX have the same homotopy type.

7. Primary spectra

With every prime p and spectrum X € 8pz we shall associate (in a natural
manner) a p-primary spectrum, called its p-primary part. Then the (weak)
product of the p-primary parts of X has the homotopy type of its torsion part.
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DerINITION 7.1. Let p be a prime, let @, denote the additive group of the
rationals of the form ¢/p", let X € 8pz, andletj, : X — X ® @, be the map given
by ¢ — ¢ ® 1forall ¢ € X. The p-primary part of X then is the spectrum 7,X =
¢j», Where ¢ is as in 3.2.

ProrosiTioN 7.2. Let X € Spr. Then TpX is a p-primary spectrum. In fact
there is a split exact sequence

0> 71X ® Qp/7Z — w,TpX — Tor (w, X, Q,/Z) — 0.

The proof is similar to that of 5.4 and 6.3, using the fact that for any abelian
group A, A ® @, is the direct limit of the sequence

AP, 4 P, .. Pog P,

CoroLLARY 7.3. A spectrum X € Spp is @ p-primary spectrum if and only if it
has the same homotopy type as ils p-primary part.

. CoroLLARY 7.4. If two spectra X, Y € 8pg have the same homotopy type, then
so do their p-primary parts.

ProrostTioN 7.5. Let X € 8Spgp and let W be the weak product of the spectra
T,X. Then W has the same homotopy type as TX. '

Proof. Let V be the union of the 7,X and let @ : V' — W be the inclusion map.
Then one shows as in the proof of 5.3 of [3], that u is a weak homotopy equiva-
lence. The inclusions @, — @ induce maps X ® @, — X ® @ and hence maps
tp: T,X — TX, which clearly map the homotopy groups of 7,X isomorphically
onto the p-primary component of the homotopy groups of 7X. This implies that
the map ¢{: V — TX induced by the maps ¢, induces an isomorphism of all
homotopy groups. Henee W and TX have the same homotopy type.
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