
ON WU'S FORMULA OF STEENROD SQUARES ON STIEFEL­
WHITNEY CLASSES* 

BY WU-CHUNG HSIANG 

Introduction 

In this paper, we shall rederive Wu's formula of Steenrod squares on Stiefel­
Whitney classes of a vector bundle ([1], [3], [7]) from Adem's relations ([2], [5]). 
Wu originally proved the formula for the squares in Grassmannian mainfolds 
which are classifying spaces1 for orthogonal groups; therefore, it is only valid 
for vector bundles ( or sphere bundles). Since our proof is based on Adem's relations 
and some elementary binomial coefficient identities, we actually show that the 
formula holds for those fibre spaces whose cohomological behavior is like a vector 
bundle. Throughout this paper we shall use only the ring of integers mod 2, Z2, for 
coefficients of any co homology group or co homology class. This paper was inspired 
by a conversation with Professor Milnor, to whom the author extends his thanks. 
He also wishes to express his gratitude to Professor Steenrod for communicating 
to him Lemma 1, which simplifies a great deal of the original proof. 

1. Thom's isomorphism cf, 

Let p : E - B be a fibration in the sense of Serre with arc-wise connected base 
space B and fibre F = p -1c b), b E B. Let Eo be a subspace of the total space of 
E-of the fibration p : E - B such that (p I Eo) : Eo - B is also a fibration with 
fibre Fo = (p I Eo)- 1(b ), b E B. Assume H\F, Fo) = 0, i =I= n and Hn(F, Fo) = 
Z 2 • Letj = (F, Fo) - (E, Eo) be the inclusion map inducingj*: H*(E, Eo) -
H*(F, F0), and let Ub be the generator of Hn(F, Fo). Cockcroft ([4]) proved the 
following result, which is a generalization of Thom's isomorphism theorem of 
([6]). 

Hk(E, Eo) = 0 for k < n, and, for any b E B, there exists a unique class 
U E Hn(E, Eo) such that j*U = Ub and, moreover, such that if the projec­
tion p: E - B induces p*: H*(B) - H*(E), then the correspondence x -
U -....;p*x defined for all x E H*(B),defines an isomorphism cf,: H\B) ~ Hn+i(E, 
E 0). Following Thom ([6]), we define 

(1) 

and call Wi E Hj(B) the jth Stiefel-Whitney class of the fibration p: E - B. 

2. Wu's formula 

* During the preparation of this paper, the author was partially supported by NSF 
Grant Number NSF-G-18995. 

1 Actually, the finite Grassmannian manifold Gm, n is only the classifying space for com­
plexes of dimension less than m. But, the infinite Grassmannian manifold Gn which is the 
limit of Gm. n as m tends to infinity is the classifying space for any paracompact space. 
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Before we state the theorem of squares on Wi , we clarify the convention of 

the symbol(~). 

( ~) = binomial coefficient Mod 2 if a ~ b ~ 0, 

(2) 
= 1 

=0 

Mod 2 if a = -1 and b = 0, 

Mod 2 otherwise. 

Let p: E - B be a fibration satisfying the condition in §1 and { Wi}, the Stiefel­
Whitney classes of the fibration. We prove the following result which is Wu's 
formula when p: E - B is a vector bundle of dimension n.2 

THEOREM. We have the fallowing formula: 

(3) a '\""' (b - a + t - 1) Sq wb = L., t Wa-t '-" Wb+t 
O;:,t;:,a 

Mod2 

The proof of the theorem will be given in §4. We remark that if a > b, then 
the left hand side is automatically zero and the right hand side of (3) is zero 
because of the convention (2). 

3. Arithmetic lemmas 

For the proof of the theorem, we need the following elementary arithmetic 
lemmas on binomial identities. 

LEMMA 1.3 If)\ ~ µ ~ 0 and p > 0 are integers, then 

(4) Mod2 

Proof. Let P(A, µ, p) denote the formula (4) which depends on three variables 
and let Q(p) be the union of the formulas P(A, µ, t) for all A ~ µ ~ 0, t ~ p. 
Now, Q(l) is just a Mod 2 version of the formula 

(5) 

which is well known. We claim that Q(2) is also true. For this purpose, it suffices 
to show that P(A, µ, 2) is also true. Replacing)\ by)\ + 1 in (5), we have 

(6) 

Applying Q(l) twice to (6) reduced to Mod 2, we have 

2 The dimension of the fibre of a vector bundle is called the dimension of the vector 
bundle. 

3 Due to Steenrod. 
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(7) 
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(~ ! 2) = (:) + C ~ 1) + e ~ D 
= (:) + C ~ 2) 

Mod2 

which is PU,.,µ, 2). Now, suppose that Q(p - 1) is true for p > 2. Both PC>--+ 1, 
µ, p - 2) and PC>--,µ - 1, p - 1) are true by Q(p - 1). We write the formula 
PC>--+ 1, µ, p - 2) and write directly under it the formula PC>--,µ - 1, p - 1); 
i.e., 

(8) Mod 2. 

= L (A+p-1-v)( v-1) 
(p-l);,;2,;e;min(2(p-1),µ+p-2) µ + P - 2 - 2v P - 1 - V 

Now, add the two formulas in ( 8) by adding corresponding terms. In each column 
of the addition we may apply Q(l) to reduce two terms to one. The resulting 
formula is just PC>--,µ, p). Since 'A ~ µ ~ 0 are arbitrary, this proves that Q(p -1) 
implies Q(p) and the proof of this lemma is complete by induction. 

• LEMMA 2. 

(9) 

·(b - v - 1)' + (b - u - 1) 
a-u-v a-u-v 

L (b - i - 1) (i - u - 1) 
+O;'ei;'e[a/2] a-2i V-1 =O 

Mod2 

for O < u < v and u + v ~ a ~ b. 

This lemma is a special case of Lemma 1 by letting 'A = b - u - 1, µ 

a - u - v and p = v - u. 

LEMMA 3. 

(10) 
( b - 1) L (b - i - 1) (i - 1) 

a - u + o;e;i;e;[a/2l a -2i u - i 

= (b - a+ (a - u) - 1) 
a-u 

Mod 2 

for O < u ~ [a/2] and a ~ b. 

This lemma is again a special case of Lemma 1 by letting 'A = b - u - 1, 
µ = a - u and p = u. 

4. Proof of Wu's Formula 

Now, we are ready to prove the theorem. First, we order the set of pairs of 
non-negative integers { (a, b) l as follows. We say (a1, b1) ~ (a2, b2) if b1 < b2 
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or b1 = b2 , a1 ~ a2 . To each pair ( a, b), there corresponds SqaWb . We prove our 
Theorem by induction on ( a, b) under this ordering. We claim that Sq1 Wb 
which corresponds to (1, b) satisfies (3). In fact, it follows from the definition 
of Wb and Cartan formula of squares ([5]) that 

(11) 

Since 

(12) 

Sq1Sqb u = Sq\ u '--' P *wb) 

= Sq1U '--' p*Wb + u '--' p*Sq1Wb 

= u '--' p*(W1 '--' wb + Sq1Wb). 

Sq1Sqb = Sqb+i, for b even, 
= 0, for b odd, 

the verification of (3) for Sq1Wb follows immediately from (11), (12) and 
Thom's isomorphism cf>. 

Suppose that SqaWb satisfies (3) for (a, b) ~ (i - 1,j) such that i - 1 ~ 1. 
Once we prove that SqiWi satisfies (3), the Theorem follows from induction. 
As we remarked in §2, if i > j, then both side of (3) are zero. Hence, (3) is 
verified. Therefore, we assume i ~ j. By the definition of Wi and Cartan formula 
of squares, we have 

(13) 

SqiSqjU = Sqi(U '--' p*Wj) 

~ s nu *s i-nw L.,O<n~i q '--' p q . j 

Lo<n~i SqnU '--' p*Sqi-nwj + u '--' p*SqiWj. 

Since i ~ j, it follows from Adem's relations ([2], [5]) that 

(14) Sqi Sqj = L (j -:- m - 1) Sqi+j-m Sqm. 
O~m~ [i/2] 1, - 2m 

Substituting (14) into (13) and using Cartan formula again, we have 

U '--' p* Sqi Wj 

L u '--' p*(Wn '--' Sqi-nwj) 
O<n~i 

+ L (j-:- m - 1) Sqi+j-m(u '--' p*Wm) 
O~m~ [i/2] 1, - 2m 

= L U '--' p*(Wn '--' Sqi-n Wj) 
O<n~i 

(15) + L (j -;:_n2-m 1) (Sqi+j-m-t '--' p* Sqt Wm) 
o::s;m::s;[i/2] " 

O~m+t~2[i/2] 

U '--' p* (o~~~i Wm '--' Sqi-n W; 

+ L (j -:- m2- 1) Wi+j-m-t '--' Sqt Wm! 
o::s;m::s; [i/2] 1, - m 

O~m+t~2[i/2] 



24 WU-CHUNG HSIANG 

Applying <f,-1 to (15), we have 

Sqi wj = L Wn ..__, Sqi-n wj 

O<n~i 

(16) 

Using the induction hypothesis, the right hand side of (16) is the sum of the 
following four types of terms with the coefficients given right behind them 

(A) W,, ..__, Wv ..__, Wi+j-u-v (0 < U < V < i, U + V ;;::; i) 

( j - i + u_ + i - U - V - 1) + (j - i + ~ + i - U - V ~ 1) 
i-u-v i-u-v 

(17) 

L (j - n - 1) (n - u - 1) 
+ [(,.+v+l)/2];:,,n;:,,min([i/21,v) i - 2n V - n 

= (j - V - 1) + (f - U - 1) 
1-u-v i-u-v 

L (j - n - 1) (n - u - 1) 
+ [(u+v+l)/2];:,,n;:,,min([i/2],v) i - 2n V - n 

(18) 

( j - i + u_ - i - 2u - 1) + (j -:-u - 1) (u - u - 1) 
i - 2u i - 2u 0 

= (j -:-u - 1) + (j -:-u - 1) = 0 
i - 2u i - 2u 

(C) 

( 19) 

( j - i + ~ + i - u - 1) 
i-u 

L (j - n - 1) (n - 1) 
+ [(u+l)/2];:,,n;:,,min([i/2],u) i - 2n u - n 

_ (j - 1) L (j - n - 1) (n - 1) 
- i - U + [(u+l)/2] ;:,,n;:,,min([i/2],u) i - 2n U - n 

(D) W;+; 

(20) t-~-1) 
By the convention (2), we have 
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( j ~ n - 1) (n - u - 1) 
i - 2n v - n 

o~~i/21 C ~ ~ 2n 
1
) (n ~ ~: 

(21) 
I: 

[(u+v+l)/2] ~n~min([i/2],v) 

( j ~ n - 1) (n - 1) 
i - 2n u - n 

o~n~i/2J C ~ ~ 2n 
1
) (: = ~) · 

(22) 
I: 

[ ( u+v+l) /2] ~ n ~ min( [ i/2],v) 

Substituting (21), (22) into (17), (19) and applying Lemma 2 and Lemma 3 
to them respectively, we have that the coefficient of Wu .____, Wv .____, W;+j-u-v 

(0 < u < v < i, u + v ~ i) is zero and the coefficient of Wu .____, Wi+j-u(O < u ~ i) 
is 

(23) 

Hence, Sq;Wj satisfies (3) and the proof of the theorem is complete. 

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 
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