
ON DOMAINS OF CONTROLLABILITY OF PROPER AND NORMAL 
SYSTEMS 

BY C. IMAz* AND Z. VoRELt 

Introduction 

Consider the linear control system 

x = b1u(t) 

iJ = x, 

where b1 > 0, u(t) E L (Lebesgue measurable in (0, oo) ), I u(t) I ~ 1. Denote 
by ST the set of all points in E 2 that can be reached from the origin in a time 
T > 0 with some u(t) satisfying the above conditions; i.e. ST = E(z E E2; 

z = eAT J; e-Ar (t1) u(T) dT, u EL, I u I ~ 1) where A = (~ ~). Since 

eAT [Te-Ar (tl) U(T) dT = eATT { e-ATu (tl) u(Tr,) d<Y 

= (~ ~2) { ( _b;b) u(Tr,) d<Y, 

(OT • 0) each point. ZT E Sr may be written as ZT = T2 z where 

_ _ ( 11 ( b1 ) z E Ct, Ct =E w E E2;w = 
0 

-r,bi u(r,) dr,, u EL, lul 

Thus in this simple case ST for any T > 0 can be calculated as a linear trans
formation of the set & independent from T. In the present paper it is shown 
that this circumstance holds asymptotically for T --, oo for any proper system 
with zero real parts in the characteristic roots. 

To further clarify the results obtained afterwards (Section 2), consider the 
control system 

x =Ax+ Bu, 

where x = col(x1, • • • , Xn), A has only ones below the main diagonal, B 
(bij) i = 1, 2, • • ·, n, J° = 1, • • ·, s, and u = coI(u1, ···,Us)- Now if CtT is 
defined as the set given by 

CtT = E ( x; x = [T e-AuBu( <Y) dr,; for all admissible u), 
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then by first making a change of variable a- = TT and arranging things properly 
one obtains 

ctr = E (x; x = f £1 
T; Qi( T )B; u( T) dT; for all admissible u), 

,-1 0 

where T;, Q; are n X n matrices, B; are n X s matrices-; T; = diag(0, • • • , 0, T, 
T2, · · • , Tn-i+i), T appearing in the ith place; Q;( T) has all columns zero except 
the ith which is the same as that of e -Ar; and Bi has all rows zero except the 
ith, this being the same as in B. From this, two things are immediately apparent. 
First we observe that the highest powers of T for all components of x appear in 
the term i = 1. Second, the first component for any x is completely determined 
by the same term mentioned before, and therefore, if the system is proper, B1 
can not be the zero matrix. From both comments we see that things depend 
primarily on the first row of B. 

Also an approximate method to calculate the sets Sr is given for the normal 
case. 

Section 1 

Consider a control system of the form 

:i: =Ax+ Bu 

where x E En (real Euclidean space), A, Bare n X n and n X r real constant 
. matrices respectively, n 2: 1, r 2: 1, u E E, is a real function oft, measurable for 
0 ::S t < oo, II u(t) II ::S 1, and II u II = max I Ui /. The class of functions u(t) 

• , i=l,· · ·,r 

with the above properties will be denoted by SJ. 
For any u E SJ the solution of ( 1) with initial conditions x = 0, t = 0 is 

given by 

Let us define the set Sr by 

ST= E(x E En;x = eAr 11·e-A'Bu(T) dT, u E SJ) 

for T > 0. Instead of Sr the set ctr will be considered: 

(2) 

i.e. ctr = E(y E En; eAry E Sr). 
It is a well-established fact that ctr is compact and convex for all T > 0 

([l]). Evidently, ctr is symmetrical with respect to the origin, i.e. if y E ctr, 
then also -y E ctr . 

Suppose further that the system (1) is proper, i.e. the vectors b(l), • • • , be'\ 
Ab(11, • · ·, Ab(r>, • • ·, An-lb(11, · · ·, An-lb(r), where b(i) represents the ith 
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column of B, generate the whole En. Then G,p contains the origin in its interior 
for any T > 0, (see [1]). An objective of this paper is to present a method to 
calculate approximately the set aT. Then ST can be calculated from (2). 

As the set aT is convex, to every point x of its frontier there corresponds at 
least one supporting hyperplane. With this hyperplane the unit normal vector 
'Y/x, directed into the halfspace not containing G,p, will be associated. 'Y/x will be 
called a supporting vector associated with x. 

Up to the end of this section it will be supposed that (1) is a normal system, 
• f h • • 1 th t b(j) Ab(j) An-Ib(j) I" l 1.e., or eac J, J = , • • • , r, e vec ors , , • • • , are 1near y 
independent. Then it is a known fact ([1]) that if xis any point of the frontier of 
G,p and if 'Y/x is an associated supporting vector, then 

(3) x = 1T e-ATBu(T) dT 

where u(t) = sgn[rJx'e-AtB] (if a = (a1, • • • , an), we define sgn a = 
(sgn a1 , • • • , sgn an), where sgn a; = 1, if a; > 0, sgn a; = -1, if a; < 0, 
and sgn a; = 0 if a; 0). Now if 'Y/ is an arbitrary vector from En with unit 
length and if u(t, rJ) sgn[rJ'e-AtB], then the point 

(3') 

belongs to the frontier of G,p and 'Y/ is its supporting vector. Further, the frontier 
of G,p does not contain non-degenerated segments; i.e., if x -i6-y are two points of 
Fr ( G,p), then 'Y/x -i6-'Y/y , which is a consequence of ( 3) and of uniqueness of solu
tions of ( 1). The former is true since for normal systems no component of 
'Y/'e-AtB is p.p. zero in any time interval, while if the system is only proper 
there might exist segments in the frontier of aT , as a component could be p.p. 
zero; therefore Theorem 1 ( to follow) must be understood for normal systems. 
From this it follows that (3') defines a mapping of the unit sphere on the frontier 
of aT. 

LEMMA 1. Let f(t) be a scalar function continuous in [0, T] and with a finite 
number of zeros there. Suppose that the sequence f;(t) converges uniformly to f(t) 
with j -+ oo in [0, T]; then sgn[fiC t)] converges almost everywhere to sgn[f ( t)] in 
[0, T]. 

Proof. Let e > 0. Suppose that f(t) has n zeros in [O, T]. Let every zero be 
enclosed in an open interval of length e/n. Let a = infl f(t) I in the complement 
C of the union of the mentioned intervals. Suppose j sufficiently large such that 
I f;(t) I > a/2 in C. Then sgn[fiCt)] = sgn[f(t)] in C, the measure of C being 
T - e. 

From Lemma 1 one obtains that the function 'Y/-+ x~ defined by (3') is con
tinuous and this implies 

LEMMA 2. If the set { rJ;} is dense on the frontier of the unit sphere, then the set 
{ x~;} is dense on Fr( aT). 
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THEOREM 1. Let { i)jl, j = 1, 2, • • • be dense on the frontier of the unit sphere 
and let P. be the polyhedron generated by the points (xn1 , • • • , Xn,), s = 1, 2, • • • ; 
then U .:1 P s = ctr ( the bar denoting the closure). 

Proof. Suppose u.:1 P. C ctr, Us:1 P. ~ ctr. Then th~re exists an in
terior point p of ctr and a neighborhood V of this point which is contained 
in ctr, V n U.:1 P. = 0. Consider the cone generated by V with the vertex 
in some Xn; . The intersection of the interior of this cone with Fr( ctr) necessarily 
contains a point Xn; , as by Lernrna 2 the set { Xn; l is dense on Fr( ctr). Then the 
polyhedron Pk with k = max[i, j] contains points of V, which contradicts the 
hypothesis. 

Nate I. Theorem 1 allows to approximate ( with an arbitrary degree of preci
sion) the set ctr by means of polyhedrons contained in ctr. Moreover, if P. is 
the polyhedron generated by the points (xn1 , • • • , xn,), and 

s 

P.' = n Hk' Hk = (x E En; ri/ (x - XnJ :s;; O) 
k-1 

(i.e., P.' is the intersection of all the closed halfspaces containing the origin 
which are determined by the hyperplane perpendicular to 1/k and tangent to 
ctr at the points Xnk), then evidently Ps c ctT c P.'. It is easy to prove an anal
ogous result for proper systems as well. 

Section 2 

In this section the asymptotic behaviour of the sets Sr for T large will be 
studied. Fot this purpose, suppose that the system ( 1) has been ttansformed 
so that A has the Jordan canonical form. Obviously the transformed sytem 
will be proper again; and to each real root 'Yi of A, or to each pair of complex 
conjugate roots ai ± i/3i , there corresponds an independent subsystem of ( 1) 
which is obviously proper again. 

Now suppose that there exists a characteristic root of A with real part zero. 
The corresponding subsystem is of the form 

(4) iJ =Dy+ Bu 

where either 

0, 0, 0 
1, 0, 0 

(5) D= 0, 1, 0 

0, 1, 0 
or 

(6) [
S2, 02, 02 

D= I2, S2, 02 

02 02, I2, S2 
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where 

S2 = (~ - g), I2 = (~ ~); 02 = (~ ~)-

In what follows by the distance dm( a1, a2) of two compact non-empty sets 
a1 c Ek and a2 c Ek is meant 

max{ sup d(x, a1), sup d(x, a2)}, 
x Ea, x E a1 

where d(x, ai) means the Euclidean distance between x and ai. 
Obviously dm( a1 , a2) is zero if and only if a1 = a2 . Further, if ai are con

vex, it is easy to show that 

dm(Fr( a1), Fr( a2)) = dm( a1 , a2) 

where Fr( ai) denotes the frontier of ai. 

THEOREM 2. Let T ~ 1 and 

ST= E(x; x = £T en<T-T)Bu(r) dr, u En). 

Then there exist convex compact sets ciT , 6, 00 , which are symmetrical with respect 
to the origin and contain a neighborhood of the origin, a 00 being independent of T, 
dm({iT, a"') - 0 with T - oo, such that x E Fr(ST) if and only if x = enTDTw, 
w E Fr(aT), where DT is a diagonal matrix whose diagonal elements are na.tural 
powers of T. Moreover, a'° is independent from (3 and depends only from the first 
two rows of B in the case ( 6) and from the first row of B in the case ( 5). 

COROLLARY. For every x E Fr(ST) there exist a y E Fr(a 00 ) (y ~ 0 as 6, 00 con
tains the origin in its interior) and a z( T) such that 

x = enTDT(Y + z(T) ), 

where 11 z(T) 11 s p(T), p(T) being independent from x E Fr(ST), p(T) - 0 
with T- oo. • 

Proof. Take w E Fr(aT) which corresponds to x. As Fr(aoo) is compact there 
exists a y E Fr(aoo) such that d(w, y) = d(w, Fr(aoo)). Now 11 w - y 11 = 
d(w, y) s;·sup d[w, Fr(aoo)] s dm[Fr(aT), Fr(aoo)] = dm(aT, aoo); taking 

wEflT 

z( T) = w - y and p( T) = dm( aT, aoo) the corollary is proved. 

Theorem 2 will be proved by means of two lemmas. 

LEMMA 3. Let K1 = E(rJ E E21c; 11 rJ 11 = 1); let 

Q(T, T) 

r 
D2 , 02 , 02 , • • • , 

-r f 2 , D2 , 02 , 

l k-1 /-l (-ll- 2 /- 2 (-ll-a /- 3 1 
( -l) (k - 1) !D2 ' T (le - 2) !D2 ' T 2 (k - 3)!D 2 , ••• 'THD 2 
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be a 2k by 2k matrix 

D2 = (c?s (3Tr 
sm (3Tr 

-sin (3Tr) T > 1 r E [O 1] 
cos (3Tr ' - ' ' ' 

(3 a positive constant, B a 2k X r real constant matrix, k, r 2: 1. Let the elements of 
a matrix C be denoted by (C)ii• Then 

r 2k 

limfg [ / L T/i(Q(T, r)B)ii I dr = L~ 
T-ct:i j=l i=l 

exists uniformly with respect to T/ E K1, where t E [O, 1], and is independent from 
(3 and (B);;, where i = 3, • • • , 2k and j = 1, • • • , r. Moreover, L~ = 
,L;:1 n P;( T) dr where 

P;( T) = [ (ri1 - TT/3 + ' .. + ( -l)k-l (k T~ll) ! T/2k-ly 

+ (ri2 - TT/4 + ... + c-1/- 1 c/~-1
1)! T/2k)2J

112 
[CBh/ + CB)2/J112• 

Proof. Let B = B1 + B2 and (B1);; = (B)i; for i = 1, 2; (B1)i; = Ofor i = 
3, · · • , 2k; (B2)i; = 0 for i = 1, 2; and (B2)i; = (B)i; for i = 3, • • • , 2k, 
j = 1, • • • , r. Then Q( T, r )B = Q(T, r )B1 + Q( T, r )B2 ; and if thejth column 
of B1 is denoted by B1 Ul, it holds that 

Q(T,r)B/i) = (d;, - rd1, ••• '(-l)k-1 c/~1
l)!dj)'' 

·where 

. _ ((B)1; cos (3Tr - (Bh; sin (3Tr) 
~- . 

(B)1; sin (3Tr + (B)2; cos (3Tr 

It is evident that for T 2: 1, r E [O, 1], and r, E K1 it holds that 

(7) r,'Q(T, r)B = r,'Q(T, r)B1 + ~ r(T, r, r,) 

where II r(T, r, r,) II ~ c. Now for eachj = 1, • • ·, r one obtains 

r,1(Q,r)B1Ul = (ri1 - rr,3 + ··· + (-1/- 1 (k ~-~)!T/21c-1) [(B)1;cos/3Tr 

- (B)2· sin (3Tr] + (ri2 - rr,4 + • • • + ( -l/- 1 rk-I T/2k) 
1 (k - 1)! 

• [(B)1; sin (3Tr + (Bh; cos (3Tr] 

(8) = [ (ri1 - TT/3 + ... + (-l)k-1 (k T~-ll)! T/2k-l) (B)lj 

+ (ri2 - TT/4 + · · · + (-l)k-1 (k r~-\)! T/2k) (B)2;] cos (3Tr 

+ [(r,2 - • • • )(B)li - (r,1 - • • ·) (Bh;] sin (3Tr = P;1( r) cos (3Tr 

+ P;i r) sin (3Tr. 
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Let t E [O, 1], and let m be a positive integer. Then, denoting trm = A, one 
obtains 

t . 2m-1 1(k+l) A 

[ I Pj1(T) cos (3TT + Pi2(T) sin (3TT I dT = L I Pj1(n) cos (3TT 
O k-0 kA 

+ P;2(Tk) sin (3TT + (PJ1(T) - PJ1(Tk)) cos (3TT 

+ (P;2( T) - P;2( Tk)) sin (3TT I dT, 

where Tk E [kA, (k + l)A]. From this, it follows that 

2
~

1 
[i~+iJA I PJi(n) cos (3TT + PJ2(Tk) sin (3TT I dT] - v 

t 

(9) ~ £ I Pi1(T) cos(3TT + Pi2(T) sin(3TT I dT 

2m-1 [l(k+l) A ] 
~ L I Pi1( Tk) cos (3TT + Pi2( Tk) sin (3TT I dT + v, 

k-0 kA 

where v = Lk-/m-i JkA(k+lJA I P;1(T) - Pi1(Tk) I + I Pi2(T) - Pi2(Tk) I dT ~ 
'YA 22m = 'Yt22-m, 'Y being an upper bound of dP in ( T) / dT independent from j = 

1, • • • , r, n = l, 2, 'Y/ E K1, and T E [O, l]. Now 

1(Hl)A 

I Pi1(Tk) cos (3TT + Pi2(Tk) sin (3TT I dT 
kA 

(10) 

where 'Pi= -arctg Pi2(Tk)/Pi1(Tk) E [O, 27r). 
Now it will be proved that if a, b, cp are real numbers, b > a, and cp E [O, 271" ), 

then 

(11) lb 2 
lim I cos((3TT + cp) I dT = - (b - a) 
T➔OO a 7J" 

uniformly with respect to cp E [O, 271"). 
Let { a, T 1 , • • • , Tp, b} r be a subdivision of [a, b] (for a fixed T) such that 

(3TTi + cp = ki1T" - (7r/2) for some integer ki , ki+1 = ki + 1, (3Ta + cp 2:: 
(k1 - l)7r - (7r/2), and (3Tb + cp ~ (kp + l)7r - (7r/2). Then 

t I cos((3TT + cp) I dr = % ri+l I cos((3Tr + cp) I dr 

1T) lb 2 1Tl lb + a + Tp = (p - l) (3T + a + Tp• 

It is evident that Ti+1 - Ti = 7r/{3T for i = 1, • • • , p - l, r1 - a ~ 7r/{3T, 

b - rp ~ 7r/(3T, and b - a - (27r/{3T) ~ (p - 1)(7r/{3T) ~ b - a; hence the 
result follows immediately. 
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From ( 10) and ( 11) it follows that 

(12) 

with T - oo uniformly with respect to 7/ E K 1 . 

By (9) and (12) one has for every T 2:: 1, m = 1, 2, • • • 

2m-1 { } L Pj(7k)~trm - if;(T, m)t2-m - v 
k-0 7r 

(13) 
t 

S 1 I Pj1 ( 7) cos {3T7 + Pj2( 7) sin {3T7 J d7 

s 2f 1 
{Pi7k) ~ t2-m + if;(T, m)trm} + v, 

k-0 7f 

where 

Pj( 7) = (Pj/( 7) + Pj/( 7) )112 = {[ ( 7/1 - 77/3 + ... + ( -1/-l (k 7.:-
1
1) ! 7/2k-ly 

+ (7/2 _ 77/4 + ... + ( -ll-l (k ~-ll) ! 7/2k) 2J [ (B)1/ + (B)2/]r
2
, 

if;(T, m) ---:70 with T - oo form= 1, 2, • • ·, if;(T, m) being positive and in
dependent from rJ E K1, t E [O, 1]. 

Clearly ( 13) implies that 

t 

(14) S fan sup 11 Pi1( 7) cos {3T7 + Pi2( 7) sin {3T7 I d7 
T"?t;/) 0 

2 2m-1 

s - L Pj(7k)!J. + V 
7f k-0 

form = 1, 2, • • • , t E [O, 1]. Hence 

with T - oo. Moreover, from (13) and (14) it follows that 

I~ { Pj(7) d7 - { I Pj1(7) cos {3T7 + Pj2(7) sin {3T7 J d7 IS 2v + if;(T, in). 

By (9), v S l-m. Now given an E > 0 choose m = m1 such that 2')'Tm S E/2 
and T1 such that y;(T, mi) < E/2 for all T 2:: T1. Neither m1 nor T1 depends on 
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'T/ E K 1 , t E [0, 1], which proves the uniform convergence in (15). Since the 
constant c in (7) is independent from T 2:: 1, r E [0, 1], and 'T/ E K 1 , 

t r / 21, I 2 r t 1 ~ t1 rJ/(Q(T, r)B);j dr - ;. ~ 1 Pir) dr, 

with T - oo uniformly with respect to 'T/ E K 1 , and t E [0, 1]. 

LEMMA 4. Let the hypothesis of Lemma 3 be fulfilled. For T 2:: 1 let <lr = 
E(x E E2k; x = J/ Q(T, r)Bu(r) dr, u E Q). Then <lr is a compact convex set, 
and there exists a compact convex set C:too c E2k , which is symmetric with respect to 
the origin, such that dm ( <lr , C:too) - 0 with T - oo. Moreover, G,00 does not depend 
on {3, T and depends on the first two rows of B only, and if at least one element of 
the first pair of rows of B is different from zero, then G,00 contains the origin in its 
interior. 

Proof. Since <lr is obtained from Ctr in (2) by means of a regular linear trans
formation with the transformation matrix diag(T, T, T2, T2, • • • , T\ Tk), <lr 
is compact, convex, and contains the origin in its interior. Now let 'T/ E K 1 . 

Then 
1 

y~r = 1 Q(T, r)B sgn('T/'Q(T, r)B) dr 

is evidently a point of contact of the hyperplane tangent to <lr and perpendicular 
to 'T/· By Lemma 3, given E > 0 there is a T. such that for T > T. 

I 'T/1 y: - L~ I < E • 

for all 'T/ E K1 . 
Let a.+= n~EK1 HL,+•, a.-= n~EK1 HL,-,, C:too = n~EK1 HL~ where HL,+u 

E(x E E2k; 'f/1X ::;; L~ + a-) for a- E E1. It is easy to see that a.+, a.-, C:t00 are 
compact, convex and symmetrical with respect to the origin, a.- C <lr C a,+ for 
T 2:: T, ; moreover, a.- C a"" C a.+. But dm( a.-, a.+) - 0 with T - oo and 
dm(<lr, C:too) ::;; dm(a,+, a.-). Now, if Lr:1 (B)i/ + (B)2/ ~ 0, by Lemma 3 
L~ > 0 for every 'T/ E K1 ; as K1 is compact, L~ > a > 0 for every 'T/ E K1 and G,00 

contains the origin in its interior. Lemma 4 is proved. 

Proof of Theorem 2. Let D be of type (5). Then for x E Sr one has: x 
Dr 2 k I 1 - -e diag(T, T, T) o Q(T, r)Bu(r) dr, where 

1, 0, 0 

0 
1 

0, -r, T' 
2 1 

Q(T, r) 
T T o, 
2!' -T, T2' 0 

(-ll-l k-1 1 
(k - 1)! 7 ' Tk-1 
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Let B Bi + B2 where Bi has the same first row as B and the re-
maining rows are zero. 

Evidently, x = eDT diag(T, ···, Tk)[flQi(r)u(r)dr + (1/T)qi(T, u)], 
where Qi ( r) is bounded, depends on Bi but not on B2 and T; also 11 q1 ( T, u) 11 S: }.., 
}.. being independent of T ~ I and u E Q. Let (x,T = E(w E Ek; w = 
fl Q(T, r)Bu(r) dr, u E Q) and ct., = E(w E Ek; w = fl Qi(r)u(r) dr, 
u E Q). aT is obtained from ctT by means of a regular linear transformation and, 
therefore, is compact, convex, and symmetrical with respect to the origin and 
contains a neighborhood of the origin for T ~ I. To prove that ct., has the 
desired properties it is sufficient, since 

Cr,.,= E (w E Ek;w = £1 e-D,B1 u(r) dr, u En), 

to prove that the system 

(16) 

is proper. First of all, observe that if L;:i I bi; I 

X1 of the vector 
t 1 e-D'Bu( r) dr 

0 then the first component 

is zero, which implies that the system ( 4) is not proper. Thus bi; ;;= 0 at least for one 
j = 1, • • • , r, say for J1. ThenDn(bi; 1 , 0, • • • , 0)' = (0, 0, • • • , bi;1 , 0, • • • ,0)' 
for n =c 0, 1, · · · , k - I, the non-zero element in the right side being in the 
(n + l)th place. Consequently, (bi; , 0, · • • , O)', (0, bi; , 0, • • • , 0)', · · • , 

- I 1 1 
(0, 0, • • • , 0, bi;) form a complete system of linearly independent vectors and 
the system ( 16) is proper. 

From the definition of ct., and <xT it follows immediately that dm(aT, a.,) S: 
(1/T)}.. which proves Theorem 2 for the case that Dis of type (5). 

Now let D be of type (6). Evidently, for T ~ I the matrix eDT diag(T, T, T2, 
T2, • • • , T\ Tk) determines a one-to-one correspondence between the points of 
Fr(<xT) and Fr(ST)- Further, L;:i (B)i/ + (B)2/ = 0 implies similarly as in 
the case (5) that the system (4) is not proper. Thus L;:i (B)i/ + (B)z/ ;;= 0 
and, by Lemma 4, ct., contains a neighborhood of the origin. 

Note 2. It can be easily seen that the sets <xT , ct., can be calculated approxi
mately in the same way as the set ctT in Note 1. It is also obvious that 
Theorem 2 may be generalized for the case that the matrix A consist of sev
eral Jordan blocks (5) and (6). 
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