ON DOMAINS OF CONTROLLABILITY OF PROPER AND NORMAL SYSTEMS

BY C. IMAZ* AND Z. VORELT

Introduction

Consider the linear control system

$$\dot{x} = b_1 u(t)$$
$$\dot{u} = x.$$

where $b_1 > 0$, $u(t) \in L$ (Lebesgue measurable in $(0, \infty)$), $|u(t)| \leq 1$. Denote by S_T the set of all points in E_2 that can be reached from the origin in a time T > 0 with some u(t) satisfying the above conditions; i.e. $S_T = E(z \in E_2;$ $z = e^{AT} \int_0^T e^{-A\tau} {b_1 \choose 0} u(\tau) d\tau$, $u \in L$, $|u| \leq 1$) where $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Since $e^{AT} \int_0^T e^{-A\tau} {b_1 \choose 0} u(\tau) d\tau = e^{AT} T \int_0^1 e^{-AT\sigma} {b_1 \choose 0} u(T\sigma) d\sigma$ $= \begin{pmatrix} T & 0 \\ 0 & T^2 \end{pmatrix} \int_0^1 {b_1 \choose -\sigma b_1} u(T\sigma) d\sigma$,

each point $z_T \in S_T$ may be written as $z_T = \begin{pmatrix} T & 0 \\ 0 & T^2 \end{pmatrix} \tilde{z}$ where

$$ilde{z}\,\in\, ilde{lpha},\,\, ilde{lpha}\,=E\left(w\,\in\,E_2\,;\,w\,=\,\int_0^1inom{b_1}{-\sigma b_1}u(\sigma)\,\,d\sigma,\ \ u\,\in\,L,\,|\,u\,|\,\leq\,1
ight).$$

Thus in this simple case S_T for any T > 0 can be calculated as a linear transformation of the set $\tilde{\alpha}$ independent from T. In the present paper it is shown that this circumstance holds asymptotically for $T \to \infty$ for any proper system with zero real parts in the characteristic roots.

To further clarify the results obtained afterwards (Section 2), consider the control system

$$\dot{x} = Ax + Bu,$$

where $x = \operatorname{col}(x_1, \dots, x_n)$, A has only ones below the main diagonal, $B = (b_{ij})$ $i = 1, 2, \dots, n$, $j = 1, \dots, s$, and $u = \operatorname{col}(u_1, \dots, u_s)$. Now if \mathfrak{a}_T is defined as the set given by

$$\mathfrak{A}_{\mathrm{T}} = E\left(x; x = \int_{0}^{T} e^{-A\sigma} Bu(\sigma) \ d\sigma; \text{ for all admissible } u\right),$$

^{*} Centro de Investigación del I P N.

[†] Czechoslovak Academy of Sciences and Centro de Investigación del I P N.

then by first making a change of variable $\sigma = T\tau$ and arranging things properly one obtains

$$\mathfrak{A}_T = E\left(x; x = \sum_{i=1}^n \int_0^1 T_i Q_i(\tau) B_i u(\tau) d\tau; \text{ for all admissible } u\right),$$

where T_i , Q_i are $n \times n$ matrices, B_i are $n \times s$ matrices; $T_i = \text{diag}(0, \dots, 0, T, T^2, \dots, T^{n-i+1})$, T appearing in the *i*th place; $Q_i(\tau)$ has all columns zero except the *i*th which is the same as that of $e^{-A\tau}$; and B_i has all rows zero except the *i*th, this being the same as in B. From this, two things are immediately apparent. First we observe that the highest powers of T for all components of x appear in the term i = 1. Second, the first component for any x is completely determined by the same term mentioned before, and therefore, if the system is proper, B_1 can not be the zero matrix. From both comments we see that things depend primarily on the first row of B.

Also an approximate method to calculate the sets S_T is given for the normal case.

Section 1

Consider a control system of the form

(1)
$$\dot{x} = Ax + Bu$$

where $x \in E_n$ (real Euclidean space), A, B are $n \times n$ and $n \times r$ real constant matrices respectively, $n \ge 1, r \ge 1, u \in E_r$ is a real function of t, measurable for $0 \le t < \infty, ||u(t)|| \le 1$, and $||u|| = \max_{i=1,\cdots,r} |u_i|$. The class of functions u(t) it the class of functions u(t).

with the above properties will be denoted by Ω .

For any $u \in \Omega$ the solution of (1) with initial conditions x = 0, t = 0 is given by

$$x = e^{At} \int_0^t e^{-A\tau} Bu(\tau) \ d\tau.$$

Let us define the set S_T by

$$S_{\mathbf{T}} = E\left(x \in E_n \ ; x = e^{AT}\int_0^T e^{-A au}Bu(\tau) \ d au, \ \ u \in \Omega
ight)$$

for T > 0. Instead of S_T the set α_T will be considered:

$$S_T = e^{AT} \mathfrak{A}_T$$

i.e. $\alpha_T = E(y \in E_n; e^{AT}y \in S_T).$

It is a well-established fact that α_r is compact and convex for all T > 0 ([1]). Evidently, α_r is symmetrical with respect to the origin, i.e. if $y \in \alpha_r$, then also $-y \in \alpha_r$.

Suppose further that the system (1) is proper, i.e. the vectors $b^{(1)}, \dots, b^{(r)}, Ab^{(1)}, \dots, Ab^{(r)}, \dots, A^{n-1}b^{(1)}, \dots, A^{n-1}b^{(r)}$, where $b^{(i)}$ represents the *i*th

column of B, generate the whole E_n . Then α_T contains the origin in its interior for any T > 0, (see [1]). An objective of this paper is to present a method to calculate approximately the set α_T . Then S_T can be calculated from (2).

As the set α_r is convex, to every point x of its frontier there corresponds at least one supporting hyperplane. With this hyperplane the unit normal vector η_x , directed into the halfspace not containing α_r , will be associated. η_x will be called a supporting vector associated with x.

Up to the end of this section it will be supposed that (1) is a normal system, i.e., for each $j, j = 1, \dots, r$, the vectors $b^{(j)}, Ab^{(j)}, \dots, A^{n-1}b^{(j)}$ are linearly independent. Then it is a known fact ([1]) that if x is any point of the frontier of α_T and if η_x is an associated supporting vector, then

(3)
$$x = \int_0^T e^{-A\tau} B u(\tau) \ d\tau$$

where $u(t) = \operatorname{sgn}[\eta'_x e^{-At}B]$ (if $a = (a_1, \dots, a_n)$, we define $\operatorname{sgn} a = (\operatorname{sgn} a_1, \dots, \operatorname{sgn} a_n)$, where $\operatorname{sgn} a_i = 1$, if $a_i > 0$, $\operatorname{sgn} a_i = -1$, if $a_i < 0$, and $\operatorname{sgn} a_i = 0$ if $a_i = 0$). Now if η is an arbitrary vector from E_n with unit length and if $u(t, \eta) = \operatorname{sgn}[\eta' e^{-At}B]$, then the point

(3')
$$x_{\eta} = \int_0^T e^{-At} Bu(t, \eta) dt$$

belongs to the frontier of \mathfrak{A}_T and η is its supporting vector. Further, the frontier of \mathfrak{A}_T does not contain non-degenerated segments; i.e., if $x \neq y$ are two points of $Fr(\mathfrak{A}_T)$, then $\eta_x \neq \eta_y$, which is a consequence of (3) and of uniqueness of solutions of (1). The former is true since for normal systems no component of $\eta' e^{-At}B$ is p.p. zero in any time interval, while if the system is only proper there might exist segments in the frontier of \mathfrak{A}_T , as a component could be p.p. zero; therefore Theorem 1 (to follow) must be understood for normal systems. From this it follows that (3') defines a mapping of the unit sphere on the frontier of \mathfrak{A}_T .

LEMMA 1. Let f(t) be a scalar function continuous in [0, T] and with a finite number of zeros there. Suppose that the sequence $f_j(t)$ converges uniformly to f(t)with $j \to \infty$ in [0, T]; then $\operatorname{sgn}[f_j(t)]$ converges almost everywhere to $\operatorname{sgn}[f(t)]$ in [0, T].

Proof. Let $\epsilon > 0$. Suppose that f(t) has n zeros in [0, T]. Let every zero be enclosed in an open interval of length ϵ/n . Let $\alpha = \inf[f(t)]$ in the complement C of the union of the mentioned intervals. Suppose j sufficiently large such that $|f_j(t)| > \alpha/2$ in C. Then $\operatorname{sgn}[f_j(t)] = \operatorname{sgn}[f(t)]$ in C, the measure of C being $T - \epsilon$.

From Lemma 1 one obtains that the function $\eta \to x_{\eta}$ defined by (3') is continuous and this implies

LEMMA 2. If the set $\{\eta_j\}$ is dense on the frontier of the unit sphere, then the set $\{x_{\eta_j}\}$ is dense on $Fr(\mathfrak{A}_T)$.

THEOREM 1. Let $\{\eta_j\}, j = 1, 2, \cdots$ be dense on the frontier of the unit sphere and let P_s be the polyhedron generated by the points $(x_{\eta_1}, \cdots, x_{\eta_s}), s = 1, 2, \cdots$; then $\overline{\bigcup_{s=1}^{\infty} P_s} = \alpha_T$ (the bar denoting the closure).

Proof. Suppose $\overline{\bigcup_{s=1}^{\infty} P_s} \subset \mathfrak{A}_T$, $\overline{\bigcup_{s=1}^{\infty} P_s} \neq \mathfrak{A}_T$. Then there exists an interior point p of \mathfrak{A}_T and a neighborhood V of this point which is contained in \mathfrak{A}_T , $V \cap \overline{\bigcup_{s=1}^{\infty} P_s} = \emptyset$. Consider the cone generated by V with the vertex in some x_{η_i} . The intersection of the interior of this cone with $Fr(\mathfrak{A}_T)$ necessarily contains a point x_{η_j} , as by Lemma 2 the set $\{x_{\eta_j}\}$ is dense on $Fr(\mathfrak{A}_T)$. Then the polyhedron P_k with $k = \max[i, j]$ contains points of V, which contradicts the hypothesis.

Note 1. Theorem 1 allows to approximate (with an arbitrary degree of precision) the set α_T by means of polyhedrons contained in α_T . Moreover, if P_s is the polyhedron generated by the points $(x_{\eta_1}, \dots, x_{\eta_s})$, and

$$P_{s}' = \bigcap_{k=1}^{s} H_{k}, H_{k} = (x \in E_{n}; \eta_{k}'(x - x_{\eta_{k}}) \leq 0)$$

(i.e., P_s' is the intersection of all the closed halfspaces containing the origin which are determined by the hyperplane perpendicular to η_k and tangent to α_T at the points x_{η_k}), then evidently $P_s \subset \alpha_T \subset P_s'$. It is easy to prove an analogous result for proper systems as well.

Section 2

In this section the asymptotic behaviour of the sets S_T for T large will be studied. For this purpose, suppose that the system (1) has been transformed so that A has the Jordan canonical form. Obviously the transformed sytem will be proper again; and to each real root γ_j of A, or to each pair of complex conjugate roots $\alpha_j \pm i\beta_j$, there corresponds an independent subsystem of (1) which is obviously proper again.

Now suppose that there exists a characteristic root of A with real part zero. The corresponding subsystem is of the form

$$\dot{y} = Dy + \tilde{B}u$$

where either

(5)
$$D = \begin{pmatrix} 0, & 0, & \cdots, & 0 \\ 1, & 0, & \cdots, & 0 \\ 0, & 1, & \cdots, & 0 \\ \vdots & & & \vdots \\ 0, & \cdots, & 1, & 0 \end{pmatrix}$$

or

(6)
$$D = \begin{pmatrix} S_2, & 0_2, & \cdots, & 0_2 \\ I_2, & S_2, & \cdots, & 0_2 \\ \vdots & & & \vdots \\ 0_2 & \cdots, & 0_2, I_2, & S_2 \end{pmatrix}$$

where

$$S_2 = \begin{pmatrix} 0 & -\beta \\ \beta & 0 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad 0_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

In what follows by the distance $d_m(\alpha_1, \alpha_2)$ of two compact non-empty sets $\alpha_1 \subset E_k$ and $\alpha_2 \subset E_k$ is meant

$$\max\{\sup_{x \in \mathfrak{a}_2} d(x, \mathfrak{a}_1), \sup_{x \in \mathfrak{a}_1} d(x, \mathfrak{a}_2)\},\$$

where $d(x, \alpha_i)$ means the Euclidean distance between x and α_i .

Obviously $d_m(\mathfrak{A}_1, \mathfrak{A}_2)$ is zero if and only if $\mathfrak{A}_1 = \mathfrak{A}_2$. Further, if \mathfrak{A}_i are convex, it is easy to show that

$$d_m(Fr(\mathfrak{A}_1), Fr(\mathfrak{A}_2)) = d_m(\mathfrak{A}_1, \mathfrak{A}_2)$$

where $Fr(\alpha_i)$ denotes the frontier of α_i .

THEOREM 2. Let $T \geq 1$ and

$$S_T = E\left(x; x = \int_0^T e^{D(T- au)} Bu(au) \ d au, u \in \Omega
ight).$$

Then there exist convex compact sets $\widetilde{\mathfrak{G}}_T$, \mathfrak{C}_∞ , which are symmetrical with respect to the origin and contain a neighborhood of the origin, \mathfrak{C}_∞ being independent of T, $d_m(\widetilde{\mathfrak{C}}_T, \mathfrak{C}_\infty) \to 0$ with $T \to \infty$, such that $x \in Fr(S_T)$ if and only if $x = e^{DT}D_T w$, $w \in Fr(\widetilde{\mathfrak{C}}_T)$, where D_T is a diagonal matrix whose diagonal elements are natural powers of T. Moreover, \mathfrak{C}_∞ is independent from β and depends only from the first two rows of B in the case (6) and from the first row of B in the case (5).

COROLLARY. For every $x \in Fr(S_r)$ there exist a $y \in Fr(\mathfrak{a}_{\infty})$ $(y \neq 0 \text{ as } \mathfrak{a}_{\infty} \text{ contains the origin in its interior})$ and a z(T) such that

$$x = e^{DT} D_T(y + z(T)),$$

where $|| z(T) || \le \rho(T)$, $\rho(T)$ being independent from $x \in Fr(S_T)$, $\rho(T) \to 0$ with $T \to \infty$.

Proof. Take $w \in Fr(\tilde{\mathfrak{a}}_{T})$ which corresponds to x. As $Fr(\mathfrak{a}_{\infty})$ is compact there exists a $y \in Fr(\mathfrak{a}_{\infty})$ such that $d(w, y) = d(w, Fr(\mathfrak{a}_{\infty}))$. Now $||w - y|| = d(w, y) \leq \sup_{w \in \tilde{\mathfrak{a}}_{T}} d[w, Fr(\mathfrak{a}_{\infty})] \leq d_m[Fr(\tilde{\mathfrak{a}}_{T}), Fr(\mathfrak{a}_{\infty})] = d_m(\tilde{\mathfrak{a}}_{T}, \mathfrak{a}_{\infty})$; taking z(T) = w - y and $\rho(T) = d_m(\tilde{\mathfrak{a}}_{T}, \mathfrak{a}_{\infty})$ the corollary is proved.

Theorem 2 will be proved by means of two lemmas.

LEMMA 3. Let $K_1 = E(\eta \in E_{2k} ; || \eta || = 1);$ let $Q(T, \tau)$

$$= \begin{pmatrix} D_2, & 0_2, & 0_2, \cdots, & 0_2 \\ -\tau D_2, & D_2, & 0_2, & 0_2 \\ \vdots & \vdots & \vdots & \vdots \\ (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} D_2, \frac{(-1)^{k-2}}{T} \frac{\tau^{k-2}}{(k-2)!} D_2, \frac{(-1)^{k-3}}{T^2} \frac{\tau^{k-3}}{(k-3)!} D_2, \cdots, \frac{1}{T^{k-1}} D_2 \end{pmatrix}$$

be a 2k by 2k matrix

$$D_2 = egin{pmatrix} \coseta T au & -\sineta T au \ \sineta T au & \coseta T au \end{pmatrix}, \ T \geq 1, \ au \in [0,\,1],$$

 β a positive constant, B a $2k \times r$ real constant matrix, $k, r \geq 1$. Let the elements of a matrix C be denoted by $(C)_{ij}$. Then

$$\lim_{T \to \infty} \int_{0}^{t} \sum_{j=1}^{r} | \sum_{i=1}^{2k} \eta_{i} (Q(T, \tau)B)_{ij} | d\tau = L_{\eta}$$

exists uniformly with respect to $\eta \in K_1$, where $t \in [0, 1]$, and is independent from β and $(B)_{ij}$, where $i = 3, \dots, 2k$ and $j = 1, \dots, r$. Moreover, $L_{\eta} = \sum_{j=1}^{r} \int_{0}^{t} P_{j}(\tau) d\tau$ where

$$P_{j}(\tau) = \left[\left(\eta_{1} - \tau \eta_{3} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k-1} \right)^{2} + \left(\eta_{2} - \tau \eta_{4} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k} \right)^{2} \right]^{1/2} \left[(B)_{1j}^{2} + (B)_{2j}^{2} \right]^{1/2}.$$

Proof. Let $B = B_1 + B_2$ and $(B_1)_{ij} = (B)_{ij}$ for i = 1, 2; $(B_1)_{ij} = 0$ for $i = 3, \dots, 2k$; $(B_2)_{ij} = 0$ for i = 1, 2; and $(B_2)_{ij} = (B)_{ij}$ for $i = 3, \dots, 2k$, $j = 1, \dots, r$. Then $Q(T, \tau)B = Q(T, \tau)B_1 + Q(T, \tau)B_2$; and if the *j*th column of B_1 is denoted by $B_1^{(j)}$, it holds that

$$Q(T,\tau)B_1^{(j)} = \left(d_j, -\tau d_j, \cdots, (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} d_j\right)',$$

where

$$d_j = \begin{pmatrix} (B)_{1j} \cos \beta T\tau - (B)_{2j} \sin \beta T\tau \\ (B)_{1j} \sin \beta T\tau + (B)_{2j} \cos \beta T\tau \end{pmatrix}$$

It is evident that for $T \ge 1$, $\tau \in [0, 1]$, and $\eta \in K_1$ it holds that

(7)
$$\eta' Q(T,\tau) B = \eta' Q(T,\tau) B_1 + \frac{1}{T} r(T,\tau,\eta)$$

where $||r(T, \tau, \eta)|| \leq c$. Now for each $j = 1, \dots, r$ one obtains

$$\eta'(Q,\tau)B_{1}^{(j)} = \left(\eta_{1} - \tau\eta_{3} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k-1}\right) \left[(B)_{1j} \cos\beta T\tau - (B)_{2j} \sin\beta T\tau\right] + \left(\eta_{2} - \tau\eta_{4} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k}\right) \\ \cdot \left[(B)_{1j} \sin\beta T\tau + (B)_{2j} \cos\beta T\tau\right] \\ = \left[\left(\eta_{1} - \tau\eta_{3} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k-1}\right) (B)_{1j} + \left(\eta_{2} - \tau\eta_{4} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k}\right) (B)_{2j}\right] \cos\beta T\tau \\ + \left[(\eta_{2} - \dots)(B)_{1j} - (\eta_{1} - \dots)(B)_{2j}\right] \sin\beta T\tau = P_{j1}(\tau) \cos\beta T\tau + P_{j2}(\tau) \sin\beta T\tau.$$

Let $t \in [0, 1]$, and let m be a positive integer. Then, denoting $t2^{-m} = \Delta$, one obtains

$$\int_{0}^{t} |P_{j1}(\tau) \cos \beta T\tau + P_{j2}(\tau) \sin \beta T\tau | d\tau = \sum_{k=0}^{2^{m-1}} \int_{k\Delta}^{(k+1)\Delta} |P_{j1}(\tau_{k}) \cos \beta T\tau + P_{j2}(\tau_{k}) \sin \beta T\tau + (P_{j1}(\tau) - P_{j1}(\tau_{k})) \cos \beta T\tau + (P_{j2}(\tau) - P_{j2}(\tau_{k})) \sin \beta T\tau | d\tau$$

where $\tau_k \in [k\Delta, (k+1)\Delta]$. From this, it follows that

$$\sum_{k=0}^{2^{m-1}} \left[\int_{k\Delta}^{(k+1)\Delta} |P_{j1}(\tau_k) \cos \beta T\tau + P_{j2}(\tau_k) \sin \beta T\tau | d\tau \right] - v$$

$$(9) \qquad \leq \int_0^t |P_{j1}(\tau) \cos \beta T\tau + P_{j2}(\tau) \sin \beta T\tau | d\tau$$

$$\leq \sum_{k=0}^{2^{m-1}} \left[\int_{k\Delta}^{(k+1)\Delta} |P_{j1}(\tau_k) \cos \beta T\tau + P_{j2}(\tau_k) \sin \beta T\tau | d\tau \right] + v,$$

where $v = \sum_{k=0}^{2^{m-1}} \int_{k\Delta}^{(k+1)\Delta} |P_{j1}(\tau) - P_{j1}(\tau_k)| + |P_{j2}(\tau) - P_{j2}(\tau_k)| d\tau \leq \gamma \Delta^2 2^m = \gamma t^2 2^{-m}$, γ being an upper bound of $dP_{jn}(\tau)/d\tau$ independent from $j = 1, \dots, r, n = 1, 2, \eta \in K_1$, and $\tau \in [0, 1]$. Now

(10)
$$\int_{k\Delta}^{(k+1)\Delta} |P_{j1}(\tau_k) \cos \beta T\tau + P_{j2}(\tau_k) \sin \beta T\tau | d\tau$$
$$= (P_{j1}^{2}(\tau_k) + P_{j2}^{2}(\tau_k))^{1/2} \int_{k\Delta}^{(k+1)\Delta} |\cos(\beta T\tau + \varphi_j)| d\tau,$$

where $\varphi_j = -\operatorname{arctg} P_{j2}(\tau_k)/P_{j1}(\tau_k) \in [0, 2\pi).$

Now it will be proved that if a, b, φ are real numbers, b > a, and $\varphi \in [0, 2\pi)$, then

(11)
$$\lim_{T \to \infty} \int_{a}^{b} |\cos(\beta T\tau + \varphi)| d\tau = \frac{2}{\pi} (b - a)$$

uniformly with respect to $\varphi \in [0, 2\pi)$.

Let $\{a, \tau_1, \cdots, \tau_p, b\}_T$ be a subdivision of [a, b] (for a fixed T) such that $\beta T \tau_i + \varphi = k_i \pi - (\pi/2)$ for some integer k_i , $k_{i+1} = k_i + 1$, $\beta T a + \varphi \ge (k_1 - 1)\pi - (\pi/2)$, and $\beta T b + \varphi \le (k_p + 1)\pi - (\pi/2)$. Then

$$\begin{aligned} \int_{a}^{b} |\cos(\beta T\tau + \varphi)| d\tau &= \sum_{i=1}^{p-1} \int_{\tau_{i}}^{\tau_{i+1}} |\cos(\beta T\tau + \varphi)| d\tau \\ &+ \int_{a}^{\tau_{1}} + \int_{\tau_{p}}^{b} = (p-1) \frac{2}{\beta T} + \int_{a}^{\tau_{1}} + \int_{\tau_{p}}^{b} \end{aligned}$$

It is evident that $\tau_{i+1} - \tau_i = \pi/\beta T$ for $i = 1, \dots, p - 1, \tau_1 - a \leq \pi/\beta T$, $b - \tau_p \leq \pi/\beta T$, and $b - a - (2\pi/\beta T) \leq (p - 1)(\pi/\beta T) \leq b - a$; hence the result follows immediately.

From (10) and (11) it follows that

(12)
$$\int_{k\Delta}^{(k+1)\Delta} |P_{j1}(\tau_k) \cos \beta T\tau + P_{j2}(\tau_k) \sin \beta T\tau | d\tau$$

$$\rightarrow (P_{j1}^{2}(\tau_{k}) + P_{j2}^{2}(\tau_{k}))^{1/2} \frac{2\Delta}{\pi}$$

with $T \to \infty$ uniformly with respect to $\eta \in K_1$. By (9) and (12) one has for every $T \ge 1, m = 1, 2, \cdots$

(13)

$$\sum_{k=0}^{2^{m-1}} \left\{ P_{j}(\tau_{k}) \frac{2}{\pi} t 2^{-m} - \psi(T, m) t 2^{-m} \right\} - v$$

$$\leq \int_{0}^{t} |P_{j1}(\tau) \cos \beta T \tau + P_{j2}(\tau) \sin \beta T \tau | d\tau$$

$$\leq \sum_{k=0}^{2^{m-1}} \left\{ P_{j}(\tau_{k}) \frac{2}{\pi} t 2^{-m} + \psi(T, m) t 2^{-m} \right\} + v,$$

where

$$P_{j}(\tau) = (P_{j1}^{2}(\tau) + P_{j2}^{2}(\tau))^{1/2} = \left\{ \left[\left(\eta_{1} - \tau \eta_{3} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k-1} \right)^{2} + \left(\eta_{2} - \tau \eta_{4} + \dots + (-1)^{k-1} \frac{\tau^{k-1}}{(k-1)!} \eta_{2k} \right)^{2} \right] \left[(B)_{1j}^{2} + (B)_{2j}^{2} \right] \right\}^{1/2},$$

 $\psi(T, m) \to 0$ with $T \to \infty$ for $m = 1, 2, \dots, \psi(T, m)$ being positive and independent from $\eta \in K_1, t \in [0, 1]$.

Clearly (13) implies that

$$\frac{2}{\pi} \sum_{k=0}^{2^{m-1}} P_j(\tau_k) - v \leq \lim_{T \to \infty} \inf \int_0^t |P_{j1}(\tau) \cos \beta T \tau + P_{j2}(\tau) \sin \beta T \tau| d\tau$$
(14)
$$\leq \lim_{T \to \infty} \sup \int_0^t |P_{j1}(\tau) \cos \beta T \tau + P_{j2}(\tau) \sin \beta T \tau| d\tau$$

$$\leq \frac{2}{\pi} \sum_{k=0}^{2^{m-1}} P_j(\tau_k) \Delta + v$$

for $m = 1, 2, \dots, t \in [0, 1]$. Hence

(15)
$$\int_0^t |P_{j1}(\tau) \cos\beta T\tau + P_{j2}(\tau) \sin\beta T\tau | d\tau \to \frac{2}{\pi} \int_0^t P_j(\tau) d\tau$$

with $T \to \infty$. Moreover, from (13) and (14) it follows that

$$\left|\frac{2}{\pi}\int_0^t P_j(\tau) \ d\tau - \int_0^t |P_{j1}(\tau) \cos\beta T\tau + P_{j2}(\tau) \sin\beta T\tau | d\tau \right| \le 2v + \psi(T,m).$$

By (9), $v \leq \gamma^{2^{-m}}$. Now given an $\epsilon > 0$ choose $m = m_1$ such that $2\gamma 2^{-m} \leq \epsilon/2$ and T_1 such that $\psi(T, m_1) < \epsilon/2$ for all $T \geq T_1$. Neither m_1 nor T_1 depends on

86

 $\eta \in K_1$, $t \in [0, 1]$, which proves the uniform convergence in (15). Since the constant c in (7) is independent from $T \ge 1, \tau \in [0, 1]$, and $\eta \in K_1$,

$$\int_{0}^{t} \sum_{j=1}^{r} \left| \sum_{i=1}^{2k} \eta_{i}'(Q(T,\tau)B)_{ij} \right| d\tau \to \frac{2}{\pi} \sum_{j=1}^{r} \int_{0}^{t} P_{j}(\tau) d\tau,$$

with $T \to \infty$ uniformly with respect to $\eta \in K_1$, and $t \in [0, 1]$.

LEMMA 4. Let the hypothesis of Lemma 3 be fulfilled. For $T \geq 1$ let $\tilde{\alpha}_T =$ $E(x \in E_{2k}; x = \int_0^1 Q(T, \tau) Bu(\tau) d\tau, u \in \Omega)$. Then $\tilde{\alpha}_T$ is a compact convex set, and there exists a compact convex set $\mathfrak{a}_{\infty} \subset E_{2k}$, which is symmetric with respect to the origin, such that $d_m(\mathfrak{A}_T, \mathfrak{A}_\infty) \to 0$ with $T \to \infty$. Moreover, \mathfrak{A}_∞ does not depend on β , T and depends on the first two rows of B only, and if at least one element of the first pair of rows of B is different from zero, then Ω_{∞} contains the origin in its interior.

Proof. Since $\tilde{\alpha}_T$ is obtained from α_T in (2) by means of a regular linear transformation with the transformation matrix diag $(T, T, T^2, T^2, \cdots, T^k, T^k)$, $\tilde{\alpha}_T$ is compact, convex, and contains the origin in its interior. Now let $\eta \in K_1$. Then

$$y_{\eta}^{T} = \int_{0}^{1} Q(T,\tau) B \operatorname{sgn}(\eta' Q(T,\tau) B) d\tau$$

is evidently a point of contact of the hyperplane tangent to $\tilde{\alpha}_{T}$ and perpendicular to η . By Lemma 3, given $\epsilon > 0$ there is a T_{ϵ} such that for $T > T_{\epsilon}$

$$|\eta' y_{\eta}^{T} - L_{\eta}| < \epsilon$$

for all $\eta \in K_1$. Let $\alpha_{\epsilon}^{+} = \bigcap_{\eta \in K_1} H_{L_{\eta}+\epsilon}, \alpha_{\epsilon}^{-} = \bigcap_{\eta \in K_1} H_{L_{\eta}-\epsilon}, \alpha_{\infty} = \bigcap_{\eta \in K_1} H_{L_{\eta}}$ where $H_{L_{\eta}+\sigma} = \bigcap_{\eta \in K_1} H_{L_{\eta}+\sigma}$ are $E(x \in E_{2k}; \eta' x \leq L_{\eta} + \sigma)$ for $\sigma \in E_1$. It is easy to see that $\alpha_{\epsilon}^+, \alpha_{\epsilon}^-, \alpha_{\infty}$ are compact, convex and symmetrical with respect to the origin, $\alpha_{\epsilon}^{-} \subseteq \tilde{\alpha}_{r} \subseteq \alpha_{\epsilon}^{+}$ for $T \geq T_{\epsilon}$; moreover, $\mathfrak{a}_{\epsilon}^{-} \subseteq \mathfrak{a}_{\infty} \subseteq \mathfrak{a}_{\epsilon}^{+}$. But $d_{m}(\mathfrak{a}_{\epsilon}^{-}, \mathfrak{a}_{\epsilon}^{+}) \to 0$ with $T \to \infty$ and $d_m(\tilde{\alpha}_T, \alpha_{\infty}) \leq d_m(\alpha_{\epsilon}^+, \alpha_{\epsilon}^-)$. Now, if $\sum_{j=1}^r (B)_{1j}^2 + (B)_{2j}^2 \neq 0$, by Lemma 3 $L_{\eta} > 0$ for every $\eta \in K_1$; as K_1 is compact, $L_{\eta} > \alpha > 0$ for every $\eta \in K_1$ and α_{∞} contains the origin in its interior. Lemma 4 is proved.

Proof of Theorem 2. Let D be of type (5). Then for $x \in S_T$ one has: x = $e^{DT} \operatorname{diag}(T, T^2, \cdots, T^k) \int_0^1 \widetilde{Q}(T, \tau) \widetilde{B}u(\tau) d\tau$, where

$$\tilde{Q}(T,\tau) = \begin{cases} 1, & 0, & \cdots, & 0\\ -\tau, & \frac{1}{T}, & 0, & \cdots, & 0\\ \\ \frac{\tau^2}{2!}, & -\frac{\tau}{T}, & \frac{1}{T^2}, & 0, & \cdots, & 0\\ \\ \vdots & & & \vdots\\ \frac{(-1)^{k-1}}{(k-1)!}\tau^{k-1}, & & \cdots, & \frac{1}{T^{k-1}} \end{cases}$$

Let $\tilde{B} = {\{\tilde{b}_{ij}\}} = \tilde{B}_1 + \tilde{B}_2$ where \tilde{B}_1 has the same first row as \tilde{B} and the remaining rows are zero.

Evidently, $x = e^{DT} \operatorname{diag}(T, \dots, T^k) [\int_0^1 \tilde{Q}_1(\tau) u(\tau) d\tau + (1/T)q_1(T, u)],$ where $\tilde{Q}_1(\tau)$ is bounded, depends on \tilde{B}_1 but not on \tilde{B}_2 and T; also $||q_1(T, u)|| \leq \lambda$, λ being independent of $T \geq 1$ and $u \in \Omega$. Let $\tilde{\alpha}_T = E(w \in E_k; w = \int_0^1 \tilde{Q}(T, \tau) \tilde{B}u(\tau) d\tau, u \in \Omega)$ and $\alpha_{\infty} = E(w \in E_k; w = \int_0^1 \tilde{Q}_1(\tau)u(\tau) d\tau, u \in \Omega)$. $\tilde{\alpha}_T$ is obtained from α_T by means of a regular linear transformation and, therefore, is compact, convex, and symmetrical with respect to the origin and contains a neighborhood of the origin for $T \geq 1$. To prove that α_{∞} has the desired properties it is sufficient, since

$$\mathfrak{A}_{\infty} = E\left(w \in E_k ; w = \int_0^1 e^{-D\tau} \widetilde{B}_1 u(\tau) \ d\tau, \ u \in \Omega
ight),$$

to prove that the system

(16)
$$\dot{x} = Dx + \tilde{B}_1 u$$

is proper. First of all, observe that if $\sum_{j=1}^{r} |\tilde{b}_{1j}| = 0$ then the first component x_1 of the vector

$$\int_0^t e^{-D\tau} \widetilde{B}u(\tau) \ d\tau$$

is zero, which implies that the system (4) is not proper. Thus $\tilde{b}_{1j} \neq 0$ at least for one $j = 1, \dots, r$, say for j_1 . Then $D^n(\tilde{b}_{1j_1}, 0, \dots, 0)' = (0, 0, \dots, \tilde{b}_{1j_1}, 0, \dots, 0)'$ for $n = 0, 1, \dots, k - 1$, the non-zero element in the right side being in the (n + 1)th place. Consequently, $(\tilde{b}_{1j_1}, 0, \dots, 0)'$, $(0, \tilde{b}_{1j_1}, 0, \dots, 0)'$, $\dots, (0, 0, \dots, 0, \tilde{b}_{1j_1})'$ form a complete system of linearly independent vectors and the system (16) is proper.

From the definition of \mathfrak{a}_{∞} and $\mathfrak{\tilde{a}}_{T}$ it follows immediately that $d_{m}(\mathfrak{\tilde{a}}_{T}, \mathfrak{a}_{\infty}) \leq (1/T)\lambda$ which proves Theorem 2 for the case that D is of type (5).

Now let D be of type (6). Evidently, for $T \ge 1$ the matrix $e^{DT} \operatorname{diag}(T, T, T^2, T^2, \cdots, T^k, T^k)$ determines a one-to-one correspondence between the points of $Fr(\tilde{\alpha}_T)$ and $Fr(S_T)$. Further, $\sum_{j=1}^{r} (\tilde{B})_{1j}^2 + (\tilde{B})_{2j}^2 = 0$ implies similarly as in the case (5) that the system (4) is not proper. Thus $\sum_{j=1}^{r} (\tilde{B})_{1j}^2 + (\tilde{B})_{2j}^2 \neq 0$ and, by Lemma 4, α_{∞} contains a neighborhood of the origin.

Note 2. It can be easily seen that the sets $\tilde{\alpha}_r$, α_{∞} can be calculated approximately in the same way as the set α_r in Note 1. It is also obvious that Theorem 2 may be generalized for the case that the matrix A consist of several Jordan blocks (5) and (6).

Centro de Investigación del I P N, México, D. F.

Reference

[1] LASALLE, J. P. The time optimal control problem, Contributions to the Theory of Nonlinear Oscillations, Vol. 5, Princeton, 1960.

88