EL NORMALIZADOR DEL p-GRUPO DE SYLOW DEL GRUPO SIMETRICO S_{p^n}

POR HUMBERTO CARDENAS Y EMILIO LLUIS

1. Introducción

En [1] se demostró que el normalizador N_2 de un p-grupo de Sylow G_2 del grupo simétrico de permutaciones de p^2 objetos es la extensión inesencial (split extension) $(Z_{p-1})^2 * G_2$ de $(Z_{p-1})^2 = Z_{p-1} \times Z_{p-1}$ por G_2 en donde Z_{p-1} indica un grupo cíclico de orden p-1. Para ello se construyó un homomorfismo $\phi: N_2 \to (Z_{p-1})^2$ de tal forma que la sucesión

$$1 \to G_2 \xrightarrow{\theta} N_2 \xrightarrow{\phi} (Z_{p-1})^2 \to 1$$

resulta exacta y escindible (splits) (θ es la inclusión).

En esta nota se demostrará el mismo resultado para los p-grupos de Sylow del grupo de permutaciones de p^n objetos con n arbitraria (ver el teorema del párrafo 5). La demostración es por inducción.

2. Caso n=1

Sea $E_1 = \{0, 1, \dots, p-1\}$ el campo de los enteros módulo $p \ y \ Z_{p-1}$ el grupo multiplicativo de E_1 . Sea S_1 el grupo de permutaciones de E_1 y $d \in S_1$ la permutación definida por

$$d(i) = i + 1 \qquad (i \in E_1)$$

(la operación de sumar es la del campo E_1). El grupo G_1 generado por d en S_1 es un p-grupo de Sylow de S_1 .

Sea x un elemento del normalizador N_1 de G_1 en S_1 . Tenemos $xdx^{-1}=d^q$ $(q\in Z_{p-1})$. Definimos entonces el homomorfismo $\phi_1\colon N_1\to Z_{p-1}$ con la fórmula $\phi_1(x)=q$. Si designamos con $\phi_1\colon G_1\to N_1$ al homomorfismo de inclusión tenemos la sucesión

$$1 \to G_1 \xrightarrow{\theta_1} N_1 \xrightarrow{\phi_1} Z_{n-1}$$

que resulta exacta: Evidentemente $\phi_1\theta_1=1$ pues si $x\in G_1$, $xdx^{-1}=d$. Supongamos ahora que $x\in N_1$ es tal que $xdx^{-1}=d$. Entonces $xd^i=d^ix$, de donde

$$x(i) = xd^{i}(0) = d^{i}x(0) = x(0) + i = d^{x(0)}(i),$$

es decir, $x=d^{x(0)}$, o sea que $x\in G_1$, con lo cual queda probada la exactitud. Definimos ahora un homomorfismo $\psi_1:Z_{p-1}\to S_1$ como sigue: $\psi_1(q)(i)=qi\ (q\in Z_{p-1}\ ,\ i\in E_1)$ (operación de multiplicar de E_1). Tenemos entonces

$$\psi_1(q)d(\psi_1(q))^{-1}(i) = \psi_1(q)d(i/q) = \psi_1(q)(i/q+1) = i+q = d^q(i),$$

lo cual prueba, en primer lugar, que ψ_1 es un homomorfismo de Z_{p-1} en N_1 y,

en segundo lugar, que

$$\phi_1 \psi_1 = 1,$$

es decir que la sucesión

$$1 \to G_1 \xrightarrow{\theta_1} N_1 \xrightarrow{\phi_1} Z_{p-1} \to 1$$

es exacta y escindida. Podemos escribir pues $N_1 = Z_{p-1} * G_1$.

3. Notaciones

Con $E_1 = \{0, 1, \dots, p-1\}$ denotaremos como antes el campo de los enteros módulo p, y con $E_{n-1} = \{0, 1, \dots, p^{n-1} - 1\}$, un conjunto de p^{n-1} elementos. Z_{p-1} será el grupo multiplicativo de E_1 . Sea $E_n = E_{n-1} \times E_1$, producto cartesiano de los dos conjuntos.

El grupo simétrico S_n que consideraremos será el de las permutaciones de los p^n elementos de E_n . Con S_1 y S_{n-1} denotaremos los grupos de permutaciones de E_1 y E_{n-1} respectivamente. Sean $\bar{\alpha}$: $S_{n-1} \to S_n$ y $\bar{\beta}$: $S_1 \to S_n$ las inclusiones definidas como sigue:

$$\bar{\alpha}(x)(i,j) = (x(i),j), \qquad (i,j) \in E_n, x \in S_{n-1},$$
 $\bar{\beta}(x)(i,j) = (i,x(j)), \qquad (i,j) \in E_n, x \in S_1.$

Para facilitar las notaciones escribiremos siempre $t = p^{n-1} - 1$.

Sea G_{n-1} un p-grupo de Sylow de S_{n-1} , y sean h_0 , h_1 , \cdots , h_t los elementos de S_n definidos por

$$h_k(i,j) = (i,j),$$
 para $i \neq k,$ $h_k(k,j) = (k,j+1).$

Sea G_n el subgrupo de S_n generado por G_{n-1} (o sea por $\bar{\alpha}(G_{n-1})$) y por los elementos h_0 , h_1 , \cdots , h_t . Los elementos de G_n son de la forma

$$x = gh_0^{s_0}h_1^{s_1}\cdots h_t^{s_t}, \qquad (g \in G_{n-1}, 0 \leqslant s_i \leqslant p-1).$$

 G_n es un p-grupo de Sylow de S_n pues su orden es $p^{(p^n-1)/(p-1)}.$

 H_0 , H_1 , \cdots , H_t denotan los subgroupos cíclicos generados por h_0 , h_1 , \cdots , h_t respectivamente y $H = H_0H_1 \cdots H_t$. Al elemento $h_0h_1 \cdots h_t$ lo denotaremos por h.

4. Lemas auxiliares

Lema 1. Vale la siguiente regla de conmutatividad:

$$h_k g = g h_{g^{-1}(k)}, \quad (g \in G_{n-1}, 0 \leqslant k \leqslant t).$$

En efecto, sea $(i, j) \in E_n$. Entonces

$$h_k g(i,j) = h_k(g(i),j) = \begin{cases} (g(i),j) & \text{si } k \neq g(i) \\ (g(i),j+1) & \text{si } k = g(i) \end{cases}$$

$$= \begin{cases} g(i,j) \\ g(i,j+1) \end{cases} = \begin{cases} gh_{g^{-1}(k)}(i,j) \\ gh_i(i,j) \end{cases} = gh_{g^{-1}(k)}(i,j).$$

El siguiente resultado es inmediato:

Lema 2.
$$h(i, j) = (i, j + 1), ((i, j) \in E_n).$$

Lema 3. Si $x \in G_r$ entonces $x^{p^{n-1}} = h^q$.

Sea $x=g{h_0}^{s_0}\cdots {h_t}^{s_t}$, y supongamos primero que $g\in G_{n-1}$ es de orden p^{n-1} . Entonces g es un ciclo y por lo tanto si $r\not\equiv s\pmod {p^{n-1}}$, $g^r(i)\not\equiv g^s(i)$ para toda $i\in E_{n-1}$. Se tiene que

$$x^{p^{n-1}} = (h_{g^{-t-1}(0)})^{s_0} \cdots (h_{g^{-t-1}(t)})^{s_t} \cdots (h_{g^{-1}(0)})^{s_0} \cdots (h_{g^{-1}(t)})^{s_t} h_0^{s_0} \cdots h_t^{s_t},$$

y por lo arriba mencionado resulta

$$x^{p^{n-1}} = h_0^q h_1^q \cdots h_t^q = h^q, \quad \text{con } q = s_0 + \cdots + s_t.$$

Si g es ahora de orden $\leq p^{n-2}$, se tiene

$$x^{p^{n-1}} = (x^{p^{n-2}})^p = (g^{p^{n-2}}h_0^{s_0'}\cdots h_t^{s_t'})^p = 1 = h^0,$$

con lo cual queda probado el lema.

Lema 4. Si x está en el normalizador N_n de G_n en S_n , entonces $xhx^{-1} = h^q$ con $1 \leq q \leq p-1$.

Sea $y=gh_0$ con $g\in G_{n-1}$ de orden p^{n-1} . Por el lema anterior, $y^{p^{n-1}}=h$. Sea $y'=xyx^{-1}$. Entonces $y'\in G_n$. Además $xy^{p^{n-1}}x^{-1}=xhx^{-1}=y'p^{n-1}=h^q$ también por el mismo lema. Además $1\leqslant q\leqslant p-1$ pues h es un elemento de orden p.

Lema 5. Sea $x \in N_n$ y sean

$$x(i, 0) = (y(i), v(i))$$

 $x(0, j) = (w(j), z(j)).$

Entonces las transformaciones $y: E_{n-1} \to E_{n-1}$, $z: E_1 \to E_1$ son elementos de S_{n-1} y S_1 respectivamente. Se tiene además la fórmula

$$x(i, j) = (y(i), v(i) - v(0) + z(j)).$$

Del Lema 4 resulta $xh^{j} = h^{qj}x$, o sea que

$$xh^{i}(i, 0) = h^{qi}(y(i), v(i)) = (y(i), v(i) + qj),$$

de donde

$$x(i,j) = (y(i), v(i) + qj).$$

De aquí obtenemos

$$x(0,j) = (y(0), v(0) + qj) = (w(j), z(j)),$$

o sea que z(j) = v(0) + qj, de lo cual resulta la fórmula del lema.

Ahora bien, como $q \in Z_{p-1}$, la relación z(j) = v(0) + qj demuestra que $z \colon E_1 \to E_1$ es biyectiva, o sea, que $z \in S_1$. Por otro lado, si $y \colon E_{n-1} \to E_{n-1}$ no fuera biyectiva, lo acabado de demostrar, junto con la fórmula del lema implicarían que x no sería una aplicación biyectiva de E_n en E_n , lo cual contradice que $x \in S_n$. O sea que $y \in S_{n-1}$, con lo cual queda probado el lema.

Sean $\lambda: N_n \to S_{n-1}$ y $\mu: N_n \to S_1$ las aplicaciones definidas, según el lema anterior, por las fórmulas

$$x(i,0) = (\lambda x(i), v(i))$$

$$x(0,j) = (w(j), \mu x(j))$$

$$(x \in N_n)$$

(o sea $y = \lambda x$, $z = \mu x$ del lema anterior).

Con esta notación, la fórmula del Lema 4 se escribe como sigue:

$$x(i, j) = (\lambda x(i), v(i) - v(0) + \mu x(j)).$$

Denotaremos con $\alpha\colon N_{n-1}\to N_n$, $\alpha'\colon G_{n-1}\to G_n$, $\beta\colon N_1\to N_n$, y $\beta'\colon G_1\to G_n$ las restricciones de las inclusiones $\bar\alpha\colon S_{n-1}\to S_n$ y $\bar\beta\colon S_1\to S_n$ respectivamente.

Lema 6. λ es un homomorfismo de N_n sobre N_{n-1} y μ un homomorfismo de N_n sobre N_1 . Además $\lambda \alpha = \text{ident.}$, $\mu \beta = \text{ident.}$, $\mu \alpha = 1$, $\lambda \beta = 1$.

Sean $x, x' \in N_n$. $xx'(i, 0) = (\lambda(xx')(i), v''(i)); x(x'(i, 0)) = x(\lambda x'(i), v'(i))$ = $(\lambda x \lambda x'(i), v(v'(i)))$, de donde $\lambda(xx') = \lambda x \lambda x'$. Sea ahora $x \in N_{n-1}$. Tenemos entonces que $\alpha x(i, j) = (x(i), j)$ y, por otro lado, $\alpha x(i, j) = (\lambda \alpha x(i)v'''(i))$, de donde $\lambda \alpha x = x$, es decir $\lambda \alpha$ = ident. Así pues, en lo que a λ se refiere bastará únicamente probar que $\lambda(N_n) \subset N_{n-1}$. Sea pues $g \in G_{n-1}$ y $x \in N_n$. Se tiene entonces $\lambda x g(\lambda x)^{-1} = \lambda x (\lambda \alpha g) \lambda x^{-1} = \lambda (x(\alpha g)x^{-1}) \in \lambda(G_n)$. La demostración se reduce entonces a probar que $\lambda(G_n) \subset G_{n-1}$, pues entonces $\lambda x \in N_{n-1}$. Para lo último observemos que si $x \in G_n$ y se escribe $x = g h_0^{s_0} \cdots h_i^{s_i}$, con $g \in G_{n-1}$, entonces $x(i,0) = (g(i),s_i)$, de donde $\lambda x = g$.

Las demostraciones para la μ son completamente análogas y las dos relaciones restantes se prueban fácilmente.

En la demostración se vió que $\lambda(G_n) \subset G_{n-1}$ y análogamente $\mu(G_n) \subset G_1$. Así pues, podemos denotar con $\lambda' \colon G_n \to G_{n-1}$ y $\mu' \colon G_n \to G_1$ las restricciones respectivas de λ y μ , y se tiene que $\lambda'\alpha' = \text{ident. y } \mu'\beta' = \text{ident.}$

Lema 7. Si $x \in N_n$, entonces $x' = (\alpha \lambda x)(\beta \mu x)$ está en la misma clase lateral que x de N_n módulo G_n .

En efecto, tenemos que $x'(i, j) = (\lambda x(i), \mu x(j))$. De aquí, $xx'^{-1}(i, j) = x((\lambda x)^{-1}(i), (\mu x)^{-1}(j)) = (i, v(i) - v(0) + j) = h_i^{v(i)-v(0)}(i, j)$, de donde $xx'^{-1} \in H \subset G_n$. Q.E.D.

5. El normalizador

Consideremos el siguiente diagrama,

$$1 \to G_{n-1} \xrightarrow{\theta_{n-1}} N_{n-1} \xrightarrow{\phi_{n-1}} (Z_{p-1})^{n-1} \to 1$$

$$\alpha' \downarrow \uparrow \lambda' \qquad \alpha \downarrow \uparrow \lambda \qquad \alpha'' \downarrow \uparrow \lambda'' \qquad 1$$

$$1 \to G_n \xrightarrow{\theta_n} N_n \xrightarrow{\phi_n} (Z_{p-1})^n \to 1$$

$$\beta' \uparrow \downarrow \mu' \qquad \beta \uparrow \downarrow \mu \qquad \beta'' \uparrow \downarrow \mu'' \qquad 1$$

$$1 \to G_1 \xrightarrow{\theta_1} N_1 \xrightarrow{\phi_1} Z_{p-1} \to 1$$

en donde el primer y el tercer renglón son sucesiones exactas y escindibles mediante las ψ_{n-1} y ψ_1 . Las θ_m son inclusiones y las ϕ_1 y ψ_1 se dan explícitamente en el párrafo 2.

Los homomorfismos λ , μ , α , y β y sus restricciones se definieron en el párrafo 4. α'' es la inclusión de $(Z_{p-1})^{n-1}$ en el producto de los primeros n-1 factores de $(Z_{p-1})^n$, y β'' , la inclusión de Z_{p-1} en el último factor de $(Z_{p-1})^n$. λ'' y μ'' son las proyecciones correspondientes.

Siendo $(Z_{p-1})^n$ el producto directo de $(Z_{p-1})^{n-1}$ y Z_{p-1} mediante λ'' y μ'' , sea ϕ_n el (único) homomorfismo que existe tal que

(1)
$$\phi_{n-1}\lambda = \lambda''\phi_n, \qquad \phi_1\mu = \mu''\phi_n.$$

Analogamente, ya que $(Z_{p-1})^n$ es la suma directa de los mismos grupos mediante las inclusiones α'' y β'' , sea ψ_n el (único) homomorfismo que existe tal que

(2)
$$\alpha \psi_{n-1} = \psi_n \alpha'', \qquad \beta \psi_1 = \psi_n \beta''.$$

Teorema. La sucesión

$$1 \to G_n \xrightarrow{\theta_n} N_n \xrightarrow{\phi_n} (Z_{p-1})^n \to 1$$

es exacta y escindida. Es decir, $N_n = (Z_{p-1})^n * G_n$.

 θ_n es monomorfismo por construcción. Demostraremos ahora que $\phi_n\psi_n=$ ident. En efecto, usando las relaciones del Lema 6, las fórmulas (1) y (2), y las relaciones

$$\alpha''\lambda''\cdot\beta''\mu''$$
 = ident., $\phi_{n-1}\psi_{n-1}$ = ident., $\phi_1\psi_1$ = ident.,

obtenemos

$$\begin{split} \phi_{n}\psi_{n} &= \phi_{n}\psi_{n}\alpha''\lambda''\cdot\phi_{n}\psi_{n}\beta''\mu'' \\ &= (\alpha''\lambda''\cdot\beta''\mu'')(\phi_{n}\alpha\psi_{n-1}\lambda''\cdot\phi_{n}\beta\psi_{1}\mu'') \\ &= \alpha''\lambda''\phi_{n}\alpha\psi_{n-1}\lambda''\cdot\alpha''\lambda''\phi_{n}\beta\psi_{1}\mu''\cdot\beta''\mu''\phi_{n}\alpha\psi_{n-1}\lambda''\cdot\beta''\mu''\phi_{n}\beta\psi_{1}\mu'' \\ &= \alpha''\phi_{n-1}\lambda\alpha\psi_{n-1}\lambda''\cdot\alpha''\phi_{n-1}\lambda\beta\psi_{1}\mu''\cdot\beta''\phi_{1}\mu\alpha\psi_{n-1}\lambda''\cdot\beta''\phi_{1}\mu\beta\psi_{1}\mu'' \\ &= \alpha''\lambda''\cdot\beta''\mu'' = \mathrm{ident.} \end{split}$$

Queda únicamente por probar la exactitud en N_n . Sea $x \in G_n$. Tenemos que $\phi_n \theta_n(x) = 1$ si y sólo si $\phi_{n-1} \lambda \theta_n(x) = 1$ y $\phi_1 \mu \theta_n(x) = 1$. Estas dos relaciones son válidas ya que

$$\phi_{n-1}\lambda\theta_n(x) = \phi_{n-1}\theta_{n-1}\lambda'(x) = 1,$$

 $\phi_1\mu\theta_n(x) = \phi_1\theta_1\mu'(x) = 1.$

Finalmente, si $\phi_n(y) = 1$ y $y \in N_n$, se tiene

$$\lambda'' \phi_n(y) = \phi_{n-1} \lambda(y) = 1,$$

 $\mu'' \phi_n(y) = \phi_1 \mu(y) = 1,$

de donde existen $x' \in G_{n-1}$ y $x'' \in G_1$ tales que

$$\lambda(y) = \theta_{n-1}(x'), \quad \mu(y) = \theta_1(x'').$$

Por consiguiente,

$$\theta_n(\alpha'(x') \cdot \beta'(x'')) = \theta_n \alpha'(x') \cdot \theta_n \beta'(x'') = \alpha \theta_{n-1}(x') \cdot \beta \theta_1(x'')$$
$$= \alpha \lambda(y) \cdot \beta \mu(y) \in \theta_n(G_n),$$

y por el Lema 7, $y \in \theta_n(G_n)$. Q.E.D.

Instituto de Matemáticas, Universidad Nacional Autónoma de México

REFERENCIAS

[1] H. CÁRDENAS Y E. LLUIS. El normalizador del p-grupo de Sylow del grupo simétrico S_{p^2} , Anales del Instituto de Matemáticas, U.N.A.M., 2 (1962), 1–8.