ABSOLUTE CESARO SUMMABILITY OF A SERIES ASSOCIATED
WITH THE CONJUGATE SERIES OF A FOURIER SERIES

By S. M. MAZHAR

1.1. Let f(f) be a periodic function with period 27 and integrable (L) over
(—m, 7). Let its Fourier series be
lag+ 217 (an Cosnt + b, Sinnt) = 20" Aa(8);

then the series conjugate to it is

31" (b, Cos nt — a, Sinnt) = D 1° B, ().
We write

o(t) =3 {fla +¢8) + flz —1};

p(@) =3 {fa+t) —fla — O}

V(1) = ﬁ Jof(t — w)(u) du,  a > 0;
‘I’o(t) = lﬁ(t)

We employ ®,(¢) with similar meaning.
1.2. Matsumoto [2] in 1956 obtained the following theorem concerning the
absolute Cesaro summability of a series associated with a Fourier series.
TaEOREM A. If
(i) ®(+0) =0,
(i) fom 77| d@s(t) | < oo,

then the series _ n" PA,(t), at the point t = =, is summable | C, a |, where 1 >
a >y 2820

The object of this note is to prove the corresponding theorem for a series
associated with the conjugate series of a Fourier series.
2.1. In what follows we shall prove the following theorem:
THEOREM. If
(i) ¥(40) =0,

(i) [o" £ |dws(t) | < oo,
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then the series Y n" *B,(t), at the point t = x, is summable | C, a |, where 1 >
a>y2B>0andalsol >a>v>820"

It may be observed that, for the special case y = 8, our theorem includes the
following theorem of Bosanquet and Hyslop [1].

TueorEM B. If 0 < 8 < 1, and
(i) Yg(+0) = 0,
(i) [o" P des(t)] < o,
then the conjugate series D, B,(t), at the point t = x, is summable | C, a |, for every
a > B. .

On the other hand, if we consider the case 8 = 0, then it reduces to the fol-
lowing theorem of Mohanty [3].

TaeEorREM C. If 0 < v < 1, and
(i) ¥(4+0) =0,
(i) Jo &[] < e,
then, the series Y, n” B,(t), at the point t = z, is summable | C, o | for a > .

2.2. The following lemmas will be required for the proof of our theorem.
’LEMMA 1. Let ‘

| | Se(n, ) = St Ay, Cosut,  k<n0<a<l
Then we have

Su(n, 1) = Okt = 1)) n>k
e O (n — k)™ o

and .
o(n®
Sn(n’ t) = ( )
o).
Proof.
Se(n, t) = D e’ Aney™" Cos vt
< Zv=0k An—va—l
= O{k(n — k).
Also

Se(n, 8) < 24, Maxy | Ty Cos ot |
= 0{t " (n — k)*.

* It should be noted that this theorem is not true for the case v = 8 = 0; see Bosanquet
and Hyslop [1]. ‘ :
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The second part of the lemma is due to Obrechkoff [4].
Lemma 2. Let

S"k(n’ t) = (%)) Sk(’ﬂ/, t)

Then we have ‘
. 0{]cx+1(n _ k)aﬂ ‘
St(m,t) = _i k <m,
Ot k" (n — k)" ™}

and
O(n'a+7\>
O(n'™®).

The proof of the first part of Lemma 2 is similar to that of Lemma 1. For the
proof of the second part, see Obrechkoff [4]', '

8N, ) = {

Lemma 3. Let
H“(n; t) = 1a > A5 cos vt
An »=0
where 8 = v — B,for v > 8 2 0, then
0(n’)
H%n,t) =
{O{t—ln&wl + t—zxné-—a}’
and
O(?’L’H—)\)
<i> M (nf) = |
dit ) ) 0{t~ln)\+ﬂ—1 + t—an)d—ﬁ—a}'
Levma 4. Let

J(n,u) = [ @t —w)* gt H*(n, t) dt, b=~v—8 ~v>8>0.

Then
O(n§+ﬁ)
O(u 1 4 o,

These two lemmas can be easily obtained by using the method of Matsumoto
[2].

J(n,u) = {

3.1. Proof of the theorem. It is sufficient to prove that
20785 /n < o,
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where
b= Zl'z 2, A" By (@)
= Al p A" ,r ‘P(t) Sin vt dit
n v=0
= —fo l//(t) Z An " P sin vt dt

'nVO

_72; fo" w(2) ~{—~ Z A" Cos vt}

Il

Il

2 T . y d a
—;fo V() 2 He(n, ) dt

= —72—r foﬂ %Ha( {I‘(l fo (t — u)ﬁ'ﬁ d\I-’,s(u)} dt,

since Wg(40) =

= 22 an) e [ G0 )

INCU:)

—7;I‘(1—2——[§3 fo" d¥s(u)J (n, u).
Therefore

©

%

el = 0 o S0 )

Now

Il

le I J(’I’L, u) l/n Znéu“l _I' Zn>u‘1‘= M1 + M2 y Say.

From Lemma 4, we have
My = X pcut O(n™7)
= O[* "y dy) = O(u).

Also ‘
My = 2 ou-1 00 P () ™%
= Ofu™ [u-"y P dy)
= 0(u").
Therefore

207 8" |/n = O [y | d¥p(w)l} < <
by hypothesis.
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This completes the proof of the theorem.

The author is highly grateful to Prof. B. N. Prasad for his kind advice and
suggestions during the preparation of this note.
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