
ABSOLUTE CESARO SUMMABILITY OF A SERIES ASSOCIATED 
WITH THE CONJUGATE SERIES OF A FOURIER SERIES 

BY s. M. MAZHAR 

1.1. Let f(t) be a periodic function with period 271" and integrable (L) over 
(-7r, 7r). Let its Fourier series be 

½ao + Li°° (an Cos nt + b" Sin nt) = Lo'° A 11 (t); 

then the series conjugate to it is ' 

Li°" (b11 Cos nt - an Sin nt) = Li°' B 11(t). 

We write 

cp(t) = ½ {f(x + t) + f(x - t)); 

if;(t) = ½ {f(x + t) - f(x - t)}; 

'¥a(t) = r~a) Jo\t - ut- 1if;(u) du, 

'lro(t) = if;(t). 

We employ <:I>a(t) with similar meaning. 

a> O; 

1.2. Matsumoto [2] in 1956 obtained the following theorem concerning the 
absolute Cesaro summability of a series associated with a Fourier series. 

THEOREM A. If 

(i) <:1>/l( +o) = o, 
(ii) f o" C 7 I dif>p(t) I < 00, 

then the series L n -r-P An ( t), at the point t = x, 1:s summable I C, a I, where 1 > 
a > 'Y ~ (3 ~ 0. 

The object of this note is to prove the corresponding theorem for a series 
associated with the conjugate series of a Fourier series. 

2.1. In what follows we shall prove the following theorem: 

THEOREM. Jf 

(i) \Jtp( +o) = o, 
(ii) Jo .. C 7 I d\Jt11(t) I < 00, 
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then the series L n -y-/3 Bn ( t), at the point t = x, is su1nmable I C, a I, where l > 
a > 'Y ?; (3 > 0 and also l > a > 'Y > (3 ?; 0. * 

It may be observed that, for the special case 'Y = (3, our theorem includes the 
following theorem of Bosanquet and Hyslop [1]. 

THEOREM B. If O < (3 < l, and 

(i) '¥13( +o) = o, 

(ii) Jo" C13 I d'1F13(t) I < oo, 

then the conjugate series L Bn(t), at the point t = x, is summable I C, a I, for every 
l\'. > (3. 

On the other hand, if we consider the case (3 = 0, then it reduces to the fol­
lowing theorem of Mohanty [3]. 

THEOREM C. If O < 'Y < l, and 

(i) t( +o) = o, 

(ii) fo"C'Yld,f;(t)l< 00 , 

then the series L n'Y Bn(t), at the point t = x, is summable IC, a\ for a > -y. 

2.2. The following lemmas will be required for the proof of our theorem. 

LEMMA 1. Let 

Then we have 

and 

Proof. 

Also 

~ kA a-1 C 
~v=O n-v OS vf, k ~ n, 0 < a < l. 

{
O(n") 

Sn(n, t) = 
O(C"). 

Sk(n, t) ~ 2An-k a-I l\faxN,N' I LNN' pos vt I 

= O{C1(n - k)"- 1}. 

'f/,> k, 

* It should be noted that this theorem is not true for the case 'Y = /j = O; see Bosanquet 
and Hyslop [1]. 
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The second part of the lemma is due to Obrechkoff [4]. 

LEMMA 2. Let 

Then we have 

and 

S/'(n, t) {
O{kHl(n - k)a-1} 

O{C1k\n - k)a-l} 
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k < n, 

The proof of the first part of Lemma 2 is similar to that of Lemma 1. For the 
proof of the second part, see Obrechkoff [4]. 

LEMMA 3. Let 

a ' 1 ~ a-1 o 
H (n, t) = -a L.., An-• V cos vt 

An v=O 

where o = 'Y - {3, for 'Y > {3 ;:: 0, then 

and 

LEMMA 4. Let 

Then 

{
O(n°) 

H"(n, t) = 
O{C1no-1 + C"n°-"l, 

0 = 'Y - /3, 

f O(n"+ll) 

.J(n, u) = lO{u-InH/l-I + u-"nH/l-"}. 

'Y '> /3 > 0. 

These two lemmas can be easily obtained by using the method of Matsumoto 
[2]. 

3.1. Proof of the theorem. It is sufficient to prove that 
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where 

a 1 ~ A a-1 -y-/JB ( ) 
~n = A;:; 2a n-• VV -y X 

- 1 ~ A a-1 -r-/3 2 J " ·'·(t) s· t dt - A a ~ n-• VV • - O 'I' Ill JI 
n •=O 'Ir 

2 J .. ( ) 1 ~ A a-1 -r-/3 • d = - O YI t -A.,, ~ n-• JIV Sill vi t 
'Ir n •=O 

2 J ,r ( ) d { 1 ~ A a-I -y-{3 C } d 
-:;;: 0 YI t df, x;:; 2a n-• JI OS vt t 

-~ Jo" Y1(t) ~ H"(n, t) dt 

= __:··~Jo"~ H"(n, t) {r(l ~ /3) Jo' (t.,... ur/3 dirp(u)} dt, 

since '1ii +o) = 0, 

= -~ Jo" dirp(u) r(l ~ /3) Ju" (t - u)-/3 l H"'(n, t) dt 

= 1rr(1
2 _ /3) Jo" dirB(u)J(n, u). 

Therefore 

Now 

Li°0 I J(n, u) 1/n = Ln;;,u-1 + Ln>u_,· = M1 + M2, say. 

From Lemma 4, we have 

Also 

Therefore 

by hypothesis. 

M1 = Ln&u-1 O(nH/3-l) 

= O{fo"- 1 y•H- 1dy} = O(u-r_). 

M2 = Ln>u-1 O{nHf3-1(nu)-"} 

= O{ U -a Ju -i"' YH/3-1-a dy} 

= O(u--r) . • 
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This completes the proof of the theorem. 

The author is highly grateful to Prof. B. N. Prasad for his kind advice and 
suggestions during the preparation of this note. 
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