
LYAPUNOV STABILITY AND PERIODIC SOLUTIONS 

BY JANE CRONIN* 

A well-known method for establishing the existence of periodic solutions of 
nonlinear ordinary differential equations is to apply the Poincare-Bendixson 
Theorem to autonomous equations or the Brouwer Fixed Point Theorem to 
nonautonomous equations. (See Lefschetz [5, Ch. XI] for a detailed discussion 
and references.) The lengthiest part of the method is the construction of a Jor­
dan curve J such that all paths ultimately stay inside J. Here an analogous 
approach is used to obtain periodic solutions for two-dimensional systems. 
The step corresponding to the construction of J referred to above is carried out 
by applying extensions of the Lyapunov stability theory due to Malkin (6, 7, 
8] to the study of the stability of the Bendixson point at infinity. This approach 
is related to work of Gomory [3], who used the Poincare line at infinity. The 
theorems obtained are related to, but do not overlap, the theorems described by 
Lefschetz [5, Ch. XI]. A result similar to those obtained here, although with 
somewhat different hypotheses, is derived by Halanay (4]. 

I am greatly indebted to Professor S. Lefschetz who made a number of addi­
tions to and changes in the original version of this paper. 

I. Stability of the point at infinity and periodic solutions 

. Consider the autonomous system 

(E) 
Xi = X1(X1, X2) 

X2 = X2(x1 , x2) 

where X1 and X 2 are of class C1 in x1 and x2 at all points in the (x1, x2)-plane. 
Let CR denote the circle 

[(xi, x2)/x/ + x/ = R2] 

and [CR] denote its interior. 

DEFINITION 1. The point at infinity is strongly stabl,e relative to (E) if given a 
positive number R, there is a Jordan curve J whose interior contains CR and all 
the critical points of (E) and is such that each path of (E) which intersects J 
crosses J going outward. (Direction on a path means direction of increasing t.) 

LEMMA 1. If p0 = (x/ 0\ x/ 0)) is an asymptotically stable critical point of (E) 
and E: > 0, there is a Jordan curve J 1 , differentiable and of finite length, such that 
Po is in the interior of Ji, the points of Ji are all in the neighborhood N,(po), and 
any path of (E) which intersects J 1 crosses J 1 going inward. 
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Proof: For simplicity assume po = 0 = (0, O). By Massera's Theorem (Mas­
sera [9] or Malkin [8, p. 312 of the AEC translation]) there is a neighborhood 
N, 1 (0) and a function V(x1, x2) with domain N, 1 (0) such that V(x 1, x2) is 
positive definite and of class C1 in x1 and x2 in N,,(O) (see Malkin [8, equation 
(73.8), p. 314]) and the derivative 

dV = av xi + av ±2 
dt ax1 ax2 

is negative definite in N ,1 ( 0). Let R = min ( E, Ei/2); let 2r be a lower bound for 
V(x1, x2) on CR ; and let 

F = [(x1, x2) E NR(O)/V(x1, x2) = r]. 

Since V(O, O) = 0 and V(x 1, x2) 2:: 2r on CR, there is at least one point of F 
on each line segment from O to CR . Also F is a closed set and the distance from 
F to CR is positive. Let (x10 , x2o) E F. Since 

av. +av. 0 -X1 -X2 < 
ax1 ax2 

at (x10, X20), then either av/ ax1 or av/ ax2 is nonzero at (x10 , X20). Suppose 
av /ax1 * 0 at (x10, X20). Then by the Implicit Function Theorem, the equation 

(Vx1,x2) - r = 0 

has a unique solution X1 = f(x2) in some neighborhood N of (x10, x~o). That is, 
the set N n F is described by a continuously differentiable curve with no end­
points. Since this kind of argument can be applied to any point in F, the set F 
is described by a set of curves of finite length. Since each of these curves has no 
endpoints or multiple points, set F is described by a set of pairwise disjoint 
Jordan curves. Let J1 be such a Jordan curve, and suppose that J 1 does not 
contain O in its interior. Since V(x1, x2) = r on J 1 , then, by the negative de­
finiteness of dV / dt, function V has a minimum less than r or a maximum greater 
than r in the interior of J1, and this minimum or maximum is different from 
zero because O is not in the interior of J1. As this contradicts the negative de­
finiteness of dV / dt, 0 must be interior to J 1 . Curve J 1 is the desired curve be­
cause, by the negative definiteness of dV /dt, any path of (E) which intersects 
J 1 crosses J1 inward. 

(Although it is not needed for the proof of the theorem, a similar argument 
shows that the entire set F is described by curve J1 . ) 

THEOREM 1. If the point at infinity is strongly stable relative to (E) and if (E) 
has exactly one critical point po and po is asymptotically stable, then (E) has at least 
one periodic solution. 

Proof: For simplicity let po = 0. Let R be a positive constant. By Definition 1 
and Lemma 1, there exist Jordan curves J and J1 such that J contains the circle 
CR and J 1 is contained in the neighborhood NR12(0). The region n bounded by 
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J1 and J contains no critical point of (E); and, since the paths of (E) cross 
J1 inward and J outward, region Q contains a negative half-path. Hence, by the 
Poincare-Bendixson Theorem (Lefschetz [5, p. 232, Theorem (9.3)]), region 
n contains a closed path (periodic solution). 

• Now let the functions G1(x1, x2, t) and G2(x1, x2, t) be of class C1 in x1, x2, 
and t at all points ( x1 , x2 , t), be bounded for all ( x1 , x2 , t), and have period T 
in t. Assume also that at least one of the two functions G1 and G2 is explicitly a 
function of t. 

THEOREM 2. If the point at infinity is strongly stable relative to (E) and the curve 
J of Definition 1 is differentiable and of finite length and if I T/ I is suffici£ntly small, 
then the system 

±1 = X1(X1, X2) + T/G1(X1, X2, t) 

±2 = X2(x1, x2) + T/G1(x1, x2, t) 

has at least one solution of period T. 

Proof: There is a Jordan curve J with the additional property that, for suffi­
ciently small IT/ I, there are no critical points of (E - TJ) on J. Let <t> (p, TJ) be 
the angle from the outward normal to J at point p to the segment of a solution 
curve of (E - T/) which starts at p and proceeds in the direction of increasing 
t. From the continuity of <t>(p, 0) on J there is a positive number a such that for 
allpEJ 

0 ~ q,(p, 0) ~ i - a. 

Since, for T/ =I= 0, system (E - T/) is nonautonomous, then, if '1J =I= 0, more than 
one solution curve of (E - '1J) may pass through the point p. That is, if 'IJ =I= 
0, function <t>(p, '1J) is not generally single-valued. However, it is easy to show 
that there is a positive number b such that for all p E J and all I '1J I < b 

Hence the curves described by solutions of (E - T/) must cross J going outward. 
Now let T/ be fixed and such that IT/ I < b, and let u(t, Po, to) be the solution 

of (E - T/) through .Po at time t0 • Let p be any point interior to or on J. The 
mapping M defined by 

M:p - u( -T, p, O) 

is defined for all such p because u(t, p, O) stays inside J for all t ~ 0. Thus M 
is a continuous mapping of u, the 2-cell bounded by J, into itself. Hence by the 
Brouwer Fixed Point Theorem, there is at least one point p1 E u such that 

Pi = u( -T, P1, O) 
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or 

u(0, Pi, 0) = u(-T, Pi, O). 

Since Gi(xi, x2, t) and G2(xi, X2, t) have period T in t, solution u(t, Pi, 0) 
has period T. 

Note: Theorem 1 is obtained only for the 2-dimensional case because the 
Poincare-Bendixson Theorem is valid only for the 2-dimensional case. However 
the definition of strong stability of the point at infinity and Theorem 2 ~an be 
formulated for the n-dimensional case. Only the 2-dimensional case is described 
because this is the only case for which there exist practical criteria for de­
termining if the point at infinity is strongly stable (see Part II). 

II. Criteria for strong stability of the point at· infinity 

Assume that (E) has the form 

Xi == L;=0m Xi;(X1 1 X2) · 

X2 = L;-(t X2;(Xi, X2),. 

where X,; is a form of degree j for i .,,; 1, 2, and that the set of critical points of 
(Ep) is bounded. Under the inversion transformation 

J: (xi, X2) - (Yi, Y2) 

defined by 

x, ( .. • ) 
y, = 2 + 2 i = 1, 2 ' Xi X2 •. 

system (Ep) becomes 

where the Y; are polynomials. Except at the origin and the other critical points 
of the system 

(S) 

the paths of (I - Ep) and (S) are defined at each point of the (Yi, Y2)-plane and 
coincide. 

LEMMA 2. If the origin O in the (Yi, Y2)-plane is an asymptotically stable critical 
point of (S) and if the set of critical points of (EP) is bounded, then the point at in­
finity is strongly stable relative to (Ep) and the curve J of definition 1 is diff erenti­
able and of finite length. 

Proof: Let R be a positive number greater than, one such that the set of criti­
cal points of (Ep) is contained in the circle Cn . Let E < 1/R. Since O is asymp­
totically stable, then, by Lemma 1, there is a Jordan curve J1 contained in N.(O) 
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such that O is in the interior of J 1 and any path of (S) which intersects J 1 crosses 
J1 inward. Let r1(J1) be the image in the (x1, x2)-plane of curve J 1 under the 
inversion transformation J- 1 = I. Curve J- 1(J 1) is a Jordan curve J, differ­
entiable and of finite length, satisfying the conditions in Definition 1. 

Thus the problem of determining if the point at infinity is strongly stable 
relative to (Ep) is reduced to the study of the stability of the critical point 0 
of system ( S). Since all the terms on the right in ( S) are of order higher than one, 
this study cannot be made by classical means. But we show how results of Mal­
kin [7, 8] can be combined with Theorem 2 to obtain the existence of periodic 
solutions for nonautonomous systems. A similar application of Theorem 1 to 
autonomous systems can be made. 

First let Xi(Yi, Y2) be the homogenous form of lowest order terms in the ith 
equation in system (S) for i = 1, 2. Define the forms: 

<J>(y1, Y2) = Yi X1(Y1, Y2) + Y2 X2(Y1, Y2), 

S(Y1, Y2) = Y2 X1(Y1, Y2) - Y1 X1(Y1, Y2). 

Malkin's stability conditions (see especially [8, pp. 417-29]) are given in terms 
of these forms. Combining Malkin's results with Theorem 2 and Lemma 2, we 
obtain: 

THEOREM 3. Suppose the system 

X1 = X1(X1, X2) + 'YJG1(X1, X2, t) 

X2 = X2(X1, X2) + 'YJG2(X1, X2, t) 

satisfies the f ollrrwing conditions: 
a) xi = L;-om X;;(x1 > X2), where the xij are forms of degree j; 
b) G1 and G2 are of class C1 in x1 , X2 , and t at every point in ( x1 , x2 , t) -

space and are bounded in (x1, X2, t)-space and have period T i'n t; and at "least one 
of the two functions G1 , G2 is explicitly a function of t; 

c) the set of critical points of (EP - O) is a bounded set; 
d) the form g(y1, Y2) is definite and ">.g < 0 where 

A = f /,,. <J>(cos 0, s~n 0) d0 
S(cos 0, sm 0) ' 

or form g(y 1, Y2) is not definite and form <J>(y1, Y2) is negative (except at the origin) 
on the straight lines described by 

Then for each 'YJ sufficiently close to zero, system (EP - 'Y/) has at "least one solu­
tion of period T. 

Theorem 3 is related to but does not overlap the theorems described by Lef­
schetz [5, Ch. XI], because those theorems describe results for single second order 



STABILITY AND PERIODIC SOLUTIONS 27 

equations which, if transformed into 2-dimensional systems, become 

±2 = H(x1, X2, t), 

where function H is nonlinear. This system is clearly different from system 
(Ep - rJ). 
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REFERENCES 

[1] I. BENDIXSON, Sur les courbes definies par des equations dijferentielles, Acta Math. 24 
(1901) 1-88. 

[2] L. CESARI, Asymptotic behavior and stability problems in ordinary differential equa­
tions. Springer-Verlag: Berlin, 1959. 

[3] R. GoMORY, Critical points at infinity and forced oscillations, Contributions to the theory 
of nonlinear oscillations, Vol. III (Ann. of Math. Study No. 36), 85-126. 

[4] A. HALANAY, Points singuliers et solutions periodiques, Acad. R. P. Romine, Bui. Sti. 
Mat. Fiz. 7 (1955) 319-24. 

[5] S. LEFSCHETZ, Differential equations: geometric theory. Interscience Publishers: New 
York, Second Edition, 1963. 

[6] I. G. MALKIN, Certain questions on the theory of the stability of motion in the sense of 
Liapounoif, Sbornik Nauchnyh Trudov Kazanskovo Aviatsionnovo Instituta 
im. P. I. Baranova, no. 7, 1937. AMS Translation No. 20. 

[7] ---, On the stability of motion in the sense of Lyapunov, Mathematicesk'li Sbornik 
N.S. 3 (45) (1938) 47-100. AMS Translation No. 41. . . · 

[8] ---, Theory of stability of motion (in Russian). Moscow, 1952 (T;anslated by the 
United States Atomic Energy Commission AEC-tr3352.) 

[9] J. L. MASSERA, On Liapounojf's conditions of stability, Ann. of Math. (2) 50 (1949) 705-
• 21. 




