A NOTE ON QUASI-LOCAL RINGS

BY ROLANDO E. PEINADO AND R. B. KILLGROVE

A commutative ring A with more than one element is called a *quasi-local* ring if it contains an identity element and the non-units of A form an ideal. It can be shown that this ideal is the only maximal ideal of A. Since the Jacobson radical, J(A) of A is the intersection of the maximal ideals of A, in a quasi-local ring, J(A) consists of the non-units of A. A Noetherian quasi-local ring is called a *local* ring. By a well known theorem of Krull, in a local ring the intersection of the powers of the Jacobson radical is zero; i.e., $\bigcap_m [J(A)]^m = 0$ (see [3, Cor. 2, p. 217]). The following example will show that the result for local rings quoted above does not always hold for quasi-local rings. This example is constructed in the manner of [1] and [2].*

Consider the set of symbols $\{x_{r_i,s_i}\}, i = 1, 2, \cdots$, where r_i/s_i is a rational number in the open interval (0, 1) and the greatest common divisor (g.c.d.) of r_i and s_i is one. A finite sequence ω of symbols x_{r_i,s_i} is called a *word*. By the length of a word, written $\ell(\omega)$, we mean the number of symbols x_{r_i,s_i} in ω . Two words ω and z are the same if $\ell(\omega) = \ell(z)$ and corresponding places in ω and z are occupied by the same symbols. Let Z_2 represent the ring of rational integers modulo two.

Let R be the set of all finite sums of words ω , built from the symbols x_{r_i,s_i} over Z_2 . That is, R is the set of all "polynomials" in $\{x_{r_i,s_i}\}$ with coefficients in Z_2 . Note that R is assumed to contain words of zero length, that is, the empty word, consisting of no symbols. Hence 1 and 0 are elements of R. Let

(1)
$$\alpha = \sum_{i=1}^{n} a_{i n i}$$
 and $\beta = \sum_{j=1}^{m} b_{j i} j$

(where a_i , $b_j \in Z_2$ and ω_i , ω_j are words) be arbitrary elements of R. A relation \equiv , called *equality*, in R is defined as follows: $\alpha \equiv \beta$ if and only if, for each word ω in α , there exists a word ω in β , such that ω is the same word as ω , and the sum of the coefficients of ω in α is equal to the sum of the coefficients of ω in β ; or if there is not a word in β that is the same as ω in α , the sum of the coefficients of ω in α is zero. (Recall that the coefficients of words in R are added modulo two.) It is easy to show that the relation \equiv among members of R is an equivalence relation on R. Define the following two binary operations in R. For α and β , members of R as in (1), define the sum of α and β by

í

(2)
$$\alpha + \beta = \sum_{i=1}^{n} a_i \omega_i + \sum_{j=1}^{m} b_j \upsilon_j = \sum_{i=1}^{n+m} a_i \omega_i$$

where $a_{n+k} a_{n+k} = b_k a_k$ for $k = 1, \dots, m$. Define the product of α and β by

(3)
$$\alpha\beta = (\sum_{i=1}^{n} a_i \omega_i) (\sum_{j=1}^{m} b_j \upsilon_j) = \sum_{i,j=1}^{n,m} a_i b_j \omega_i \upsilon_j$$

^{*} This example is constructed without use of valuation rings. It is clear that if R_v is a non-discrete valuation ring, then R_v is a quasi-local ring, and if M_v is the ideal formed by the non-units of R_v , then $\bigcap_n M_v^n \neq 0$.

where $\omega_i z_j$ is the word obtained by writing the sequence z_j after the sequence ω_i of symbols x_{r_i,s_i} .

Let $[\alpha]$ be the equivalence class of elements equal to α , determined by the equivalence relation \equiv defined above. Define, as is customary, $[\alpha] \oplus [\beta] = [\alpha + \beta]$ and $[\alpha] \odot [\beta] = [\alpha\beta]$. Then the set R* of equivalence classes, together with the operations \oplus and \odot defined above, forms a non-commutative ring with identity. (This fact is easily verified.) Now, for the sake of simplicity, let us not distinguish between a class of equivalent elements of R and any member of the class. Henceforth we will talk about the ring $\langle R, +, \cdot \rangle$ when we really mean the ring $\langle R*, \oplus, \odot \rangle$.

Let p_i/q_i and r_j/s_j be rational numbers on the open interval (0, 1) such that the g.c.d. $(p_i, q_i) = \text{g.c.d.}(r_j, s_j) = 1$. Define

(4)
$$u = p_i s_j + q_i r_j / \text{g.c.d.} (p_i s_j + q_i r_j, q_i s_j), \text{ and}$$
$$v = q_i s_j / \text{g.c.d.} (p_i s_j + q_i r_j, q_i s_j).$$

An easy calculation will show that u and v are rational integers and g.c.d. (u, v) = 1. Let T be the set of words of R of the form $\{x_{p_i,q_i}x_{r_j,s_j}\}$. A word ω in R is said to be in normal form, written $\mathbf{N}(\omega)$, if and only if it does not contain members from T. An element α of R is said to be in normal form, $\mathbf{N}(\alpha)$, if and only if each word ω of α is in normal form. For any word ω , let ω_1 be the word obtained from ω by eliminating a member of T from ω , using one of the relations

(5)
$$x_{p_i,q_i}x_{r_j,s_j} - x_{u,v} = 0$$
, if $u < v$, and $x_{p_i,q_i}x_{r_j,s_j} = 0$, if $u \ge v$,

u and v being as defined in (4). Call this process an *elementary transformation*, written $\omega \to \omega_1$. Two words ω and ε are said to be *similar* if there exists a finite sequence of words ω , ω_1 , ω_2 , \cdots , ω_n , ε in R such that each member of the sequence is obtained from the preceding one by an elementary transformation. Two elements α and β of R are said to be *similar* if, for every word ω of α , there is a word ε in β similar to ω .

Let *H* be the subset of *R*, consisting of all finite sums and products of left members of (5). *H* will be a two-sided ideal of *R* if it can be shown that a solution exists for the decision problem as to whether or not an element α of *R* belongs to *H*. Let α be similar to β , and α and β elements of *R*. If a unique normal form $\mathbf{N}(\alpha)$ exists, then $\mathbf{N}(\alpha) = \mathbf{N}(\beta)$. Clearly $\alpha \in H$ if and only if $\mathbf{N}(\alpha) = 0$. Hence the existence of such a unique normal form gives us the solution for the above decision problem. As a consequence of the definitions of addition and multiplication in *R* as well as the definition of normal form, we have for α , β in *R* (if $\mathbf{N}(\alpha)$ and $\mathbf{N}(\beta)$ exist and are unique)

$$\mathbf{N}(\alpha + \beta) = \mathbf{N}(\alpha) + \mathbf{N}(\beta)$$
 and $\mathbf{N}(\alpha\beta) = \mathbf{N}[\mathbf{N}(\alpha) \cdot \mathbf{N}(\beta)].$

Therefore, to show the existence of such unique normal form $\mathbf{N}(\alpha)$ for each α in R, it is sufficient to consider the words ω of α .

Let ω be a word in R; recall that the number of symbols x_{r_i,s_i} which appear in ω is called the length of ω , written $\ell(\omega)$. If ω is the empty word, $\ell(\omega) = 0$. We will prove the existence and uniqueness of $\mathbf{N}(\omega)$ by induction on the length of ω .

It is clear that if $\ell(\omega) \leq 1$, then $\omega = \mathbf{N}(\omega)$; that is, ω is already in normal form and is unique. Assume that, for all words ω such that $\ell(\omega) \leq n - 1$, $\mathbf{N}(\omega)$ exists and is unique. Let ω be a word of R such that $\ell(\omega) = n$, and let

$$\mathfrak{s} = \mathfrak{w} x_{p_i,q_i} x_{r_j,s_j}$$

where $l(\omega) \leq n - 1$. Hence, by the induction hypothesis, $\mathbf{N}(\omega)$ exists and is unique. We have to consider two cases, for u and v defined as in (4).

Case 1. If $u \ge v$, then

$$w x_{p_i,q_i} x_{r_i,s_i} \to w \cdot 0 = 0$$

Hence $\mathfrak{a} \to \mathfrak{a} \cdot 0 = 0$. But $\mathbf{N}(0) = 0$ and, since \mathfrak{a} is similar to $0, \mathbf{N}(\mathfrak{a}) = \mathbf{N}(0) = 0$. Hence $\mathbf{N}(\mathfrak{a})$ exists and is unique.

Case 2. If u < v, then

$$wx_{p_i,q_i}x_{r_i,s_i} \to wx_{u,v}$$

and $\ell(\omega x_{u,v}) \leq n - 1$, and thus, by the induction hypothesis, $\mathbf{N}(\omega x_{u,v})$ exists and is unique. Now, since ι and $\omega x_{u,v}$ are similar, $\mathbf{N}(\iota) = \mathbf{N}(\omega x_{u,v})$. Hence $\mathbf{N}(\iota)$ exists and is unique.

The above arguments show that H is a (two-sided) ideal of R. Therefore R/H = A is well defined. As can be observed, the elements of A are of the form $\sum_{i=1}^{n} a_i \omega_i$, where $\omega_i = x_{r_i,s_i}$ or ω_i is the empty word, $a_i \in Z_2$. A is a commutative ring with identity, namely $1 \in A$. The units of A are of the form $1 + \sum_{i=1}^{n} a_i \omega_i$, $a_i \in Z_2$, $\omega_i = x_{r_i,s_i}$ or ω_i is the empty word. Clearly the nonunits of A are of the form $\sum_{i=1}^{n} a_i x_{r_i,s_i}$, $a_i \in Z_2$, and they form an ideal in A, which, as remarked before, is equal to J(A). Hence A is a quasi-local ring. Now, since

$$x_{1,2} = x_{1,2m} x_{m-1,2m}$$

 $x_{1,2}$ belongs to $[J(A)]^m$ for any positive rational integer m. Therefore

$$\bigcap_m [J(A)]^m \neq 0.$$

UNIVERSITY OF IOWA, IOWA CITY

SAN DIEGO STATE COLLEGE, SAN DIEGO, CALIF.

References

- A. MALCEV, On the immersion of an algebraic ring into a field, Math. Ann. 113 (1937) 686-91.
- [2] J. C. SHEPHERDSON, Inverses and zero divisors in matrix rings, Proc. London Math. Soc.
 (3) 1 (1941) 71-75.
- [3] O. ZARISKI and P. SAMUEL, Commutative Algebra, I. D. Van Nostrand Co.: New York, 1959.

ĵ

1