A NOTE ON QUASI-LOCAL RINGS

BY ROLANDO E. PEINADO AND R. B. KILLGROVE

A commutative ring *A* with more than one element is called a *quasi-local* ring if it contains an identity element and the non-units of *A* form an ideal. It can be shown that this ideal is the only maximal ideal of *A.* Since the Jacobson radical, $J(A)$ of A is the intersection of the maximal ideals of A, in a quasi-local ring, $J(A)$ consists of the non-units of A. A Noetherian quasi-local ring is called a *local* ring. By a well known theorem of Krull, in a local ring the intersection of the powers of the Jacobson radical is zero; i.e., $\bigcap_{m} [J(A)]^m = 0$ (see [3, Cor. 2, p. 217]). The following example will show that the result for local rings quoted above does not always hold for quasi-local rings. This example is constructed in the manner of [1] and [2].*

Consider the set of symbols $\{x_{r_i,s_i}\}\$, $i = 1, 2, \cdots$, where r_i/s_i is a rational number in the open interval $(0, 1)$ and the greatest common divisor $(g.c.d.)$ of r_i and s_i is one. A finite sequence ω of symbols x_{r_i,s_i} is called a *word*. By the length of a word, written $\ell(\omega)$, we mean the number of symbols x_{r_i,s_i} in ω . Two words ω and ω are the *same* if $\ell(\omega) = \ell(\omega)$ and corresponding places in ω and α are occupied by the same symbols. Let Z_2 represent the ring of rational integers *modulo* two.

Let *R* be the set of all finite sums of words ω , built from the symbols x_{r_i,s_i} over Z_2 . That is, R is the set of all "polynomials" in $\{x_{r_i,s_i}\}\)$ with coefficients in Z_2 . Note that R is assumed to contain words of zero length, that is, the empty word, consisting of no symbols. Hence 1 and 0 are elements of R . Let

(1)
$$
\alpha = \sum_{i=1}^n a_i \alpha_i \text{ and } \beta = \sum_{j=1}^m b_j \alpha_j
$$

(where a_i , $b_j \in Z_2$ and ω_i , ω_j are words) be arbitrary elements of R. A relation \equiv , called *equality*, in *R* is defined as follows: $\alpha \equiv \beta$ if and only if, for each word ω in α , there exists a word ω in β , such that ω is the same word as ω , and the sum of the coefficients of ω in α is equal to the sum of the coefficients of ω in β ; or if there is not a word in β that is the same as α in α , the sum of the coefficients of ω in α is zero. (Recall that the coefficients of words in *R* are added modulo two.) It is easy to show that the relation \equiv among members of R is an equivalence relation on R. Define the following two binary operations in R. For α and β , members of R as in (1), define the *sum* of α and β by

í

(2)
$$
\alpha + \beta = \sum_{i=1}^n a_i \omega_i + \sum_{j=1}^m b_j \omega_j = \sum_{i=1}^n \omega_i \omega_i
$$

where a_{n+k} $w_{n+k} = b_{k}$ for $k = 1, \dots, m$. Define the *product* of α and β by

$$
(3) \qquad \alpha\beta = (\sum_{i=1}^n a_i \omega_i) (\sum_{j=1}^m b_j \omega_j) = \sum_{i,j=1}^n {n,m \atop n \neq j} a_i b_j \omega_i \omega_j
$$

^{*} This example is constructed without use of valuation rings. It is clear that if R_v is a non-discrete valuation ring, then R_v is a quasi-local ring, and if M_v is the ideal formed by the non-units of R_v , then $\bigcap_n M_v^n \neq 0$.

where ω_i , is the word obtained by writing the sequence ω_j after the sequence ω_i of symbols x_{r_i,s_i} .

Let $[\alpha]$ be the equivalence class of elements equal to α , determined by the equivalence relation \equiv defined above. Define, as is customary, $[\alpha] \oplus [\beta] =$ $[a + \beta]$ and $[a] \odot [\beta] = [\alpha\beta]$. Then the set $R*$ of equivalence classes, together with the operations \oplus and \odot defined above, forms a non-commutative ring with identity. (This fact is easily verified.) Now, for the sake of simplicity, let us not distinguish between a class of equivalent elements of R and any member of the class. Henceforth we will talk about the ring $\langle R, +, \cdot \rangle$ when we really mean the ring $\langle R*, \oplus, \odot \rangle$.

Let p_i/q_i and r_j/s_j be rational numbers on the open interval $(0, 1)$ such that the g.c.d. $(p_i, q_i) =$ g.c.d. $(r_j, s_j) = 1$. Define

(4)
$$
u = p_i s_j + q_i r_j / g.c.d. (p_i s_j + q_i r_j, q_i s_j),
$$
 and
\n $v = q_i s_j / g.c.d. (p_i s_j + q_i r_j, q_i s_j).$

An easy calculation will show that *u* and *v* are rational integers and g.c.d. $(u, v) = 1$. Let *T* be the set of words of *R* of the form $\{x_{p_i, q_i}x_{r_i, s_j}\}\$. A word w in *R* is said to be in *normal form*, written $\mathbf{N}(\omega)$, if and only if it does not contain members from *T*. An element α of *R* is said to be in *normal form,* $\mathbf{N}(\alpha)$, if and only if each word ω of α is in normal form. For any word ω , let ω_1 be the word obtained from ω by eliminating a member of *T* from ω , using one of the relations

$$
(5) \quad x_{p_i,q_i}x_{r_j,s_j}-x_{u,v}=0, \quad \text{if} \quad u < v, \quad \text{and} \quad x_{p_i,q_i}x_{r_j,s_j}=0, \quad \text{if} \quad u \geq v,
$$

u and *v* being as defined in (4) . Call this process an *elementary transformation,* written $w \to \omega_1$. Two words w and x are said to be *similar* if there exists a finite sequence of words w, w_1 , w_2 , \cdots , w_n , ψ in R such that each member of the sequence is obtained from the preceding one by an elementary transformation. Two elements α and β of R are said to be *similar* if, for every word α of α , there is a word ϕ in β similar to ω .

Let *H* be the subset of *R*, consisting of all finite sums and products of left members of (5). *H* will be a two-sided ideal of *R* if it can be shown that a solution exists for the decision problem as to whether or not an element α of R belongs to *H*. Let α be similar to β , and α and β elements of *R*. If a unique normal form $\mathbf{N}(\alpha)$ exists, then $\mathbf{N}(\alpha) = \mathbf{N}(\beta)$. Clearly $\alpha \in H$ if and only if $\mathbf{N}(\alpha) = 0$. Hence the existence of such a unique normal form gives us the solution for the above decision problem. As a consequence of the definitions of addition and multiplication in R as well as the definition of normal form, we have for α , β in R (if $\mathbf{N}(\alpha)$ and $\mathbf{N}(\beta)$ exist and are unique)

$$
\mathbf{N}(\alpha + \beta) = \mathbf{N}(\alpha) + \mathbf{N}(\beta) \text{ and } \mathbf{N}(\alpha\beta) = \mathbf{N}[\mathbf{N}(\alpha) \cdot \mathbf{N}(\beta)].
$$

Therefore, to show the existence of such unique normal form $\mathbf{N}(\alpha)$ for each α in *R*, it is sufficient to consider the words ω of α .

Let ω be a word in R; recall that the number of symbols x_{r_i,s_i} which appear in w is called the length of w, written $\ell(\omega)$. If w is the empty word, $\ell(\omega) = 0$. We will prove the existence and uniqueness of $\mathbf{N}(\omega)$ by induction on the length of ω .

It is clear that if $\ell(\omega) \leq 1$, then $\omega = \mathbf{N}(\omega)$; that is, ω is already in normal form and is unique. Assume that, for all words ω such that $\ell(\omega) \leq n - 1$, $\mathbf{N}(\omega)$ exists and is unique. Let λ be a word of *R* such that $\ell(\lambda) = n$, and let

$$
x = \mathcal{X}_{p_i,q_i} x_{r_j,s_j}
$$

where $\ell(\omega) \leq n - 1$. Hence, by the induction hypothesis, **N**(ω) exists and is unique. We have to consider two cases, for u and v defined as in (4) .

Case 1. If $u \geq v$, then

$$
\omega x_{p_i,q_i} x_{r_i,s_i} \to \omega \cdot 0 = 0
$$

Hence $\lambda \to \lambda \cdot 0 = 0$. But $\mathbf{N}(0) = 0$ and, since λ is similar to 0, $\mathbf{N}(\lambda) = \mathbf{N}(0) = 0$. Hence $\mathbf{N}(\lambda)$ exists and is unique.

Case 2. If $u < v$, then

$$
\mathcal{W}x_{p_i,q_i}x_{r_i,s_i}\to \mathcal{W}x_{u,v}
$$

and $P(\mathbf{x}_u, v) \leq n - 1$, and thus, by the induction hypothesis, $\mathbf{N}(\mathbf{x}_u, v)$ exists and is unique. Now, since α and $\alpha x_{u,v}$ are similar, $\mathbf{N}(\alpha) = \mathbf{N}(\alpha x_{u,v})$. Hence $\mathbf{N}(\alpha)$ exists and is unique.

The above arguments show that H is a (two-sided) ideal of R . Therefore $R/H = A$ is well defined. As can be observed, the elements of A are of the form $\sum_{i=1}^{n} a_{i}w_{i}$, where $w_{i} = x_{r_{i},s_{i}}$ or w_{i} is the empty word, $a_{i} \in Z_{2}$. *A* is a commutative ring with identity, namely $1 \in A$. The units of A are of the form $1+\sum_{i=1}^n a_i\omega_i$, $a_i \in Z_2$, $\omega_i = x_{r_i,s_i}$ or ω_i is the empty word. Clearly the nonunits of *A* are of the form $\sum_{i=1}^n a_i x_{r_i, s_i}$, $a_i \in Z_2$, and they form an ideal in *A*, which, as remarked before, is equal to $J(A)$. Hence A is a quasi-local ring. Now, since

$$
x_{1,2} = x_{1,2m} x_{m-1,2m}
$$

 $x_{1,2}$ belongs to $[J(A)]^m$ for any positive rational integer m. Therefore

$$
\bigcap_{m} [J(A)]^{m} \neq 0.
$$

UNIVERSITY OF IOWA, IOWA CITY

SAN DIEGO STATE COLLEGE, SAN DIEGO, CALIF.

REFERENCES

- [1] A. MALCEV, *On the immersion of an algebraic ring into a field,* Math. Ann. **113** (1937) 686-91.
- [2] J.C. SHEPHERDSON, *Inverses and zero divisors in matrix rings,* Proc. London Math. Soc. (3) 1 (1941) 71-75.
- [3] 0. ZARISKI and P. SAMUEL, *Commutative Algebra, I.* D. Van Nostrand Co.: New York, 1959.

 $\mathfrak i$

f.